Mg-14Li-1Al (LA141), LA141-0.3Y, LA141-0.3Sr, and LA141-0.3Y-0.3Sr alloys were prepared in an induction furnace in the argon atmosphere. The microstructures of these alloys were investigated through scanning electro...Mg-14Li-1Al (LA141), LA141-0.3Y, LA141-0.3Sr, and LA141-0.3Y-0.3Sr alloys were prepared in an induction furnace in the argon atmosphere. The microstructures of these alloys were investigated through scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive spectrometer (EDS). The results show that yttrium and/or strontium additions produce a strong grain refining effect in LA141 alloy. The mean grain sizes of the alloys with addition of Y and/or Sr are reduced remarkably from 600 to 500, 260, 230 μm, respectively. Al 2 Y, Al 4 Sr and Mg 17 Sr 2 phases with different morphologies are verified and exist inside the grain or at the grain boundaries, thus possibly act as heterogeneous nucleation sites and pin up grain boundaries, which restrain the grain growth.展开更多
Al-5Ti-1B master alloy was added into Mg-14Li-1Al(LA141)alloy and then LA141 sheets were prepared by extrusion and cold rolling.The effect of the addition level of Al-5Ti-1B master alloy on the grain size of LA141 all...Al-5Ti-1B master alloy was added into Mg-14Li-1Al(LA141)alloy and then LA141 sheets were prepared by extrusion and cold rolling.The effect of the addition level of Al-5Ti-1B master alloy on the grain size of LA141 alloy was investigated as well as the effects of the total reduction of cold rolling and the annealing temperature on microstructure,mechanical properties and plastic formability of the LA141 sheets.The results show that the optimal addition level of Al-5Ti-1B master alloy into LA141 alloy is 1.25%(mass fraction)and LA141 alloy has the finest grains.With the increase of the total reduction of cold rolling,the grains of the as-rolled LA141 sheets were flattened gradually.A proper anneal temperature of 200℃ is obtained for the cold rolled LA141 sheets. Under this condition,microstructure of the LA141 sheets consists of fine and uniform equiaxed grains and has higher Erichsen cupping index(IE).展开更多
The as-cast and as-extruded Mg–9Li–1Al–xCa alloys(x=0,0.2;wt%)were prepared by a simple alloying process followed by hot extrusion with an extrusion ratio of 28.2.The microstructures of the as-cast and as-extruded...The as-cast and as-extruded Mg–9Li–1Al–xCa alloys(x=0,0.2;wt%)were prepared by a simple alloying process followed by hot extrusion with an extrusion ratio of 28.2.The microstructures of the as-cast and as-extruded Mg–9Li–1Al–xCa alloys were observed to investigate the effect of calcium(Ca)element on the Mg–9Li–1Al(LA91)alloy,and the crystallographic calculations between Al_(2)Ca and the matrix(α-Mg andβ-Li phases)were examined on the basis of the edge-to-edge matching model.The experimental results indicate that the addition of 0.2 wt%Ca into LA91 alloy reduce the size of theα-Mg phases in the as-cast alloy and that ofβ-Li phases in the as-extruded alloy due to the Al_(2)Ca particles distributed inside the matrix.Crystallographic calculation results suggested that there is a good crystallographic matching between the matrix and Al_(2)Ca,which confirmed that Al_(2)Ca particles can act as a heterogeneous nucleation site for bothα-Mg andβ-Li phases and were effective grain refiners for LA91 alloy.展开更多
基金Project(50725413)supported by the National Natural Science Foundation of ChinaProject(2010CSTC-BJLKR)supported by Chongqing Science and Technology Commission, ChinaProject(CDJXS10132203)supported by the Fundamental Research Funds for the Central Universities,China
文摘Mg-14Li-1Al (LA141), LA141-0.3Y, LA141-0.3Sr, and LA141-0.3Y-0.3Sr alloys were prepared in an induction furnace in the argon atmosphere. The microstructures of these alloys were investigated through scanning electron microscope (SEM), X-ray diffractometer (XRD) and energy dispersive spectrometer (EDS). The results show that yttrium and/or strontium additions produce a strong grain refining effect in LA141 alloy. The mean grain sizes of the alloys with addition of Y and/or Sr are reduced remarkably from 600 to 500, 260, 230 μm, respectively. Al 2 Y, Al 4 Sr and Mg 17 Sr 2 phases with different morphologies are verified and exist inside the grain or at the grain boundaries, thus possibly act as heterogeneous nucleation sites and pin up grain boundaries, which restrain the grain growth.
文摘以改善冷轧Mg-Li系合金的变形能力为目的,系统研究了冷轧变形后的Mg-9Li-1Zn合金的退火热处理工艺,分析了退火温度和退火时间对合金组织和性能的影响.研究结果表明:Mg-9Li-1Zn合金适宜的退火温度为280~300℃,退火温度过高会出现晶粒长大,表面脱锂等现象.300℃退火60 min后,合金的维氏硬度值为426.7 MPa,充分完成再结晶软化的合金在后续冷轧时总变形率可达70%.合金的退火时间以保证α相的充分球化及组织的均匀化为准则,实验中确定的最佳退火制度为300℃保温60 min.
基金Project(50604020)supported by the National Natural Science Foundation of ChinaProject(2007CB613706)supported by the National Basic Research Program of ChinaProject(2009AA03Z507)supported by the National High-tech Research and Development Program of China
文摘Al-5Ti-1B master alloy was added into Mg-14Li-1Al(LA141)alloy and then LA141 sheets were prepared by extrusion and cold rolling.The effect of the addition level of Al-5Ti-1B master alloy on the grain size of LA141 alloy was investigated as well as the effects of the total reduction of cold rolling and the annealing temperature on microstructure,mechanical properties and plastic formability of the LA141 sheets.The results show that the optimal addition level of Al-5Ti-1B master alloy into LA141 alloy is 1.25%(mass fraction)and LA141 alloy has the finest grains.With the increase of the total reduction of cold rolling,the grains of the as-rolled LA141 sheets were flattened gradually.A proper anneal temperature of 200℃ is obtained for the cold rolled LA141 sheets. Under this condition,microstructure of the LA141 sheets consists of fine and uniform equiaxed grains and has higher Erichsen cupping index(IE).
基金The authors are grateful for the financial supports from National Natural Science Foundation of China(51171212)Chongqing Science and Technology Commission(CSTC2012JJJQ50001,CSTC2013jcyjC60001,cstc2012ggB 50003)+1 种基金The National Science and Technology Program of China(2013DFA71070)the Fundamental Research Funds for the Central Universities(CDJZR13138801).
文摘The as-cast and as-extruded Mg–9Li–1Al–xCa alloys(x=0,0.2;wt%)were prepared by a simple alloying process followed by hot extrusion with an extrusion ratio of 28.2.The microstructures of the as-cast and as-extruded Mg–9Li–1Al–xCa alloys were observed to investigate the effect of calcium(Ca)element on the Mg–9Li–1Al(LA91)alloy,and the crystallographic calculations between Al_(2)Ca and the matrix(α-Mg andβ-Li phases)were examined on the basis of the edge-to-edge matching model.The experimental results indicate that the addition of 0.2 wt%Ca into LA91 alloy reduce the size of theα-Mg phases in the as-cast alloy and that ofβ-Li phases in the as-extruded alloy due to the Al_(2)Ca particles distributed inside the matrix.Crystallographic calculation results suggested that there is a good crystallographic matching between the matrix and Al_(2)Ca,which confirmed that Al_(2)Ca particles can act as a heterogeneous nucleation site for bothα-Mg andβ-Li phases and were effective grain refiners for LA91 alloy.