期刊文献+
共找到1,507篇文章
< 1 2 76 >
每页显示 20 50 100
Desorption of Cl^(-) from Mg-Al layered double hydroxide intercalated with Cl^(-) using CO_(2) gas and water 被引量:1
1
作者 Tomohito Kameda Hiroki Uchida +5 位作者 Shogo Kumagai Yuko Saito Keiichi Mizushina Ichirou Itou Tianye Han Toshiaki Yoshioka 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第1期131-134,共4页
Mg-Al layered double hydroxide intercalated with CO_(3)^(2-)(CO_(3)·Mg-Al LDH) is effective for treating HCl exhaust gas.HCl reacts with CO_(3)^(2-) in CO_(3)·Mg-Al LDH, resulting in the formation of Cl·... Mg-Al layered double hydroxide intercalated with CO_(3)^(2-)(CO_(3)·Mg-Al LDH) is effective for treating HCl exhaust gas.HCl reacts with CO_(3)^(2-) in CO_(3)·Mg-Al LDH, resulting in the formation of Cl·Mg-Al LDH.We propose that CO_(2) can be used for the desorption of Cl^(-)from Cl·Mg-Al LDH to regenerate CO_(3)·Mg-Al LDH.Herein,we studied the desorption of a from CI-Mg-Al LDH by adding water to Cl·Mg-Al LDH and blowing CO_(2) into it.We also analyzed the effects of temperature and water addition speed on the desorption of CI^(-)from Cl·Mg-Al LDH.Our results show that the added water adhered to CI·Mg-Al LDH and that CO_(2) in the gaseous phase was dissolved in this adhered water,thus generating CO_(3)^(2-).Therefore,anion exchange occurred between CO_(3)^(2-) and Cl^(-)in the Cl·Mg-Al LDH,thus desorbing Cl^(-). 展开更多
关键词 mg-al layered double hydroxide CO_(2)gas Cl^(-)desorption Semi-dry method
下载PDF
Enhancing the stability of Ni Fe-layered double hydroxide nanosheet array for alkaline seawater oxidation by Ce doping
2
作者 Yongchao Yao Shengjun Sun +14 位作者 Hui Zhang Zixiao Li Chaoxin Yang Zhengwei Cai Xun He Kai Dong Yonglan Luo Yan Wang Yuchun Ren Qian Liu Dongdong Zheng Weihua Zhuang Bo Tang Xuping Sun Wenchuang(Walter)Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期306-312,共7页
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau... Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution. 展开更多
关键词 Ce doping NiFe layered double hydroxide Seawater oxidation Electrocatalysis Cl^(-) repulsion
下载PDF
Advances in Mg-Al-layered double hydroxide steam coatings on Mg alloys:A review
3
作者 Shi-Qi Pan Fen Zhang +1 位作者 Cuie Wen Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1505-1518,共14页
Layered double hydroxide(LDH)coatings on magnesium(Mg)alloys shine brightly in the field of corrosion protection because of their special ion-exchange function.State-of-the-art steam coating as a type of LDH film prep... Layered double hydroxide(LDH)coatings on magnesium(Mg)alloys shine brightly in the field of corrosion protection because of their special ion-exchange function.State-of-the-art steam coating as a type of LDH film preparation technique has emerged in recent years because only pure water is required as the steam source and its environmentally friendly LDH coating fits the current need for green development.Moreover,this coating can effectively inhibit the corrosion of the Mg alloy substrate due to the chemical bonding between the coating and the Mg alloy substrate.This review systematically explains cutting-edge advancements in the growth mechanism and corrosion behavior of LDH steam coatings,and analyzes the advantages and limitations of the steam-coating method.The influencing factors including pressure,CO_(2)/CO_(3)^(2-),aluminum content of the substrate alloy,solution type,and acid-pickling pretreatment,as well as the post-treatment of steam-coating defects,are comprehensively elucidated,providing new insights into the development of the in situ steam-coating technique.Finally,existing issues and future prospects are discussed to further accelerate the widespread application of Mg alloys. 展开更多
关键词 Corrosion layered double hydroxide(LDH) Mg alloy Steam coating Surface modification
下载PDF
Design, synthesis, and nanoengineered modification of spherical graphene surface by layered double hydroxide (LDH) for removal of As (Ⅲ) from aqueous solutions 被引量:1
4
作者 Najma Kamali Jahan B.Ghasemi +2 位作者 Ghodsi Mohammadi Ziarani Sahar Moradian Alireza Badiei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期374-380,共7页
In this study, new nano spherical graphene modified with LDH(Layered Double Hydroxide) was prepared and used to remove As(Ⅲ) ion from aqueous solutions. At first, graphene oxide was synthesized from graphite using a ... In this study, new nano spherical graphene modified with LDH(Layered Double Hydroxide) was prepared and used to remove As(Ⅲ) ion from aqueous solutions. At first, graphene oxide was synthesized from graphite using a well-known Hammer method. The obtained graphene oxide solution was sprayed in octanol solution under different temperatures and sprayed speed as influenced variables. The structure and physical characterization of synthesized spherical graphene oxide were determined by various techniques,including FT-IR, N_(2) adsorption–desorption, SEM, TEM, and EDX. In the next step, the hydrothermal method was applied to deposition LDH on the spherical graphene oxide. The synthesized spherical graphene modified by LDH was used to remove As(Ⅲ) as a toxic heavy metal ion. The effect of influenced variables including p H, contact time, amount of sorbent, and type eluent studied and the optimum values were as 8, 30, 50, and HCl(0.5 mol·L^(-1)), respectively. After optimization, the studied sorbent was shown a high adsorption capacity(149.3 mg·g^(-1)). The adsorption mechanism and kinetic models exhibited good agreement with the Langmuir isotherm and pseudo-second-order trends, respectively. Besides, the synthesized product was tested for seven times without significant loss in its sorption efficiency. 展开更多
关键词 Graphene-based spherical adsorbent layered double hydroxide(LDH) Adsorption Spray-assisted deep-frying
下载PDF
Self-supported ultrathin NiCo layered double hydroxides nanosheets electrode for efficient electrosynthesis of formate 被引量:1
5
作者 Haoyuan Chi Jianlong Lin +6 位作者 Siyu Kuang Minglu Li Hai Liu Qun Fan Tianxiang Yan Sheng Zhang Xinbin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期267-275,I0008,共10页
Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,... Electrochemical CO_(2)reduction into energy-carrying compounds,such as formate,is of great importance for carbon neutrality,which however suffers from high electrical energy input and liquid products crossover.Herein,we fabricated self-supported ultrathin NiCo layered double hydroxides(LDHs)electrodes as anode for methanol electrooxidation to achieve a high formate production rate(5.89 mmol h^(-1)cm^(-2))coupled with CO_(2)electro-reduction at the cathode.A total formate faradic efficiency of both anode for methanol oxidation and cathode for CO_(2)reduction can reach up to 188%driven by a low cell potential of only 2.06 V at 100 mA cm^(-2)in membrane-electrode assembly(MEA).Physical characterizations demonstrated that Ni^(3+)species,formed on the electrochemical oxidation of Ni-containing hydroxide,acted as catalytically active species for the oxidation of methanol to formate.Furthermore,DFT calculations revealed that ultrathin LDHs were beneficial for the formation of Ni^(3+)in hydroxides and introducing oxygen vacancy in NiCo-LDH could decrease the energy barrier of the rate-determining step for methanol oxidation.This work presents a promising approach for fabricating advanced electrodes towards electrocatalytic reactions. 展开更多
关键词 CO_(2)reduction Methanol oxidation reaction FORMATE layered double hydroxides Oxygen vacancies
下载PDF
Layered double hydroxides as electrode materials for flexible energy storage devices 被引量:1
6
作者 Qifeng Lin Lili Wang 《Journal of Semiconductors》 EI CAS CSCD 2023年第4期30-45,共16页
To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on ele... To prevent and mitigate environmental degradation,high-performance and cost-effective electrochemical flexible energy storage systems need to be urgently developed.This demand has led to an increase in research on electrode materials for high-capacity flexible supercapacitors and secondary batteries,which have greatly aided the development of contemporary digital communications and electric vehicles.The use of layered double hydroxides(LDHs)as electrode materials has shown productive results over the last decade,owing to their easy production,versatile composition,low cost,and excellent physicochemical features.This review highlights the distinctive 2D sheet-like structures and electrochemical characteristics of LDH materials,as well as current developments in their fabrication strategies for expanding the application scope of LDHs as electrode materials for flexible supercapacitors and alkali metal(Li,Na,K)ion batteries. 展开更多
关键词 layered double hydroxide flexible energy storage devices structural designs electrochemical performances
下载PDF
Identification and comparison of the local physicochemical structures of transition metal-based layered double hydroxides for high performance electrochemical oxygen evolution reactions
7
作者 Min Sung Kim Bipin Lamichhane +5 位作者 Ju-Hyeon Lee Jin-Gyu Bae Jeong Yeon Heo Hyeon Jeong Lee Shyam Kattel Ji Hoon Lee 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期89-97,I0004,共10页
Layered double hydroxides(LDHs) have attracted considerable attention as a cost effective alternative to the precious iridium-and ruthenium-based electrocatalysts for an oxygen evolution reaction(OER),a bottleneck of ... Layered double hydroxides(LDHs) have attracted considerable attention as a cost effective alternative to the precious iridium-and ruthenium-based electrocatalysts for an oxygen evolution reaction(OER),a bottleneck of water electrolysis for sustainable hydrogen production.Despite their excellent OER performance,the structural and electronic properties of LDHs,particularly during the OER process,remain to be poorly understood.In this study,a series of LDH catalysts is investigated through in situ X-ray absorption fine structure analyses and density functional theory(DFT) calculations.Our experimental results reveal that the LDH catalyst with equal amounts of Ni and Fe(NF-LDH) exhibits the highest OER activity and catalytic life span when compared with its counterparts having equal amounts of Ni and Co(NC-LDH)and Ni only(Ni-LDH).The NF-LDH shows a markedly enhanced OER kinetics compared to the NC-LDH and the Ni-LDH,as proven by the lower overpotentials of 180,240,and 310 mV,respectively,and the Tafel slopes of 35.1,43.4,and 62.7 mV dec^(-1),respectively.The DFT calculations demonstrate that the lowest overpotential of the NF-LDH is associated with the active sites located at the edge planes of NF-LDH in contrast to those located at the basal planes of Ni-LDH and NC-LDH.The current study pinpoints the active sites on various LDHs and presents strategies for optimizing the OER performance of the LDH catalysts. 展开更多
关键词 layered double hydroxides Oxygen evolution reaction In situ X-ray analyses Density functional theory Catalytic active sites
下载PDF
Smart Interfacing between Co-Fe Layered Double Hydroxide and Graphitic Carbon Nitride for High-efficiency Electrocatalytic Nitrogen Reduction
8
作者 Xiaohui Wu Lu Tang +5 位作者 Yang Si Chunlan Ma Peng Zhang Jianyong Yu Yitao Liu Bin Ding 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期62-69,共8页
Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction... Bimetallic compounds such as hydrotalcite-type layered double hydroxides(LDHs)are promising electrocatalysts owing to their unique electronic structures.However,their abilities toward nitrogen adsorption and reduction are undermined since the surface-mantled,electronegative-OH groups hinder the charge transfer between transition metal atoms and nitrogen molecules.Herein,a smart interfacing strategy is proposed to construct a coupled heterointerface between LDH and 2D g-C_(3)N_(4),which is proven by density functional theory(DFT)investigations to be favorable for nitrogen adsorption and ammonia desorption compared with neat LDH surface.The interfaced LDH and g-C_(3)N_(4) is further hybridized with a self-standing TiO_(2) nanofibrous membrane(NM)to maximize the interfacial effect owing to its high porosity and large surface area.Profited from the synergistic superiorities of the three components,the LDH@C_(3)N_(4)@TiO_(2) NM delivers superior ammonia yield(2.07×10^(−9) mol s^(−1) cm^(−2))and Faradaic efficiency(25.3%),making it a high-efficiency,noble-metal-free catalyst system toward electrocatalytic nitrogen reduction. 展开更多
关键词 density functional theory electrocatalytic nitrogen reduction graphitic carbon nitride interface engineering layered double hydroxide
下载PDF
Environmentally Friendly Room Temperature Synthesis of 1-Tetralone over Layered Double Hydroxide-Hosted Sulphonato-Salen-Nickel(II) Complex
9
作者 Samiran Bhattacharjee Mohammad A. Matin +1 位作者 Hasina Akhter Simol Anowar Hosen 《Green and Sustainable Chemistry》 CAS 2023年第1期9-22,共14页
1-Tetralone, a useful synthetic intermediate in the manufacture of pharmaceuticals, agrochemicals and dyes, can be prepared by liquid phase catalytic oxidation of tetralin. Selective oxidation of tetralin to 1-tetralo... 1-Tetralone, a useful synthetic intermediate in the manufacture of pharmaceuticals, agrochemicals and dyes, can be prepared by liquid phase catalytic oxidation of tetralin. Selective oxidation of tetralin to 1-tetralone is still a big challenge with low-temperature processes using environmentally friendly routes even after decades of research. Herein, we demonstrate room-temperature oxidation of tetralin to 1-tetralone over layered double hydroxide-hosted sulphonato-salen-nickel(II) complex, LDH-[Ni-salen]. The layered double hydroxide-hosted sulphonato-salen-nickel(II) compound was characterized by powder X-ray diffraction, Fourier transform infrared spectrometer (FTIR), UV-Visible diffuse reflectance spectra, scanning electron microscopy (SEM) and elemental analysis. The theoretical calculations of free sulphonato-salen-nickel(II) complex using Density Functional Theory/CAM-B3LYP at the 6-311++ G(d,p) level of theory were also used to determine the orientation of the Ni-salen compound within the layered structure. The immobilized compound, LDH-[Ni-salen] was found to be an effective reusable catalyst for the oxidation of tetralin to 1-tetralone using a combination of trimethylacetaldehyde and molecular oxygen (14.5 psi) and at 25&deg;C. At 45.5% conversion, tetralin was converted to 1-tetralone with 77.2% selectivity at room temperature and atmospheric pressure after 24 h. The catalyst recycles test and hot filtration experiment showed that oxidation proceeded through Ni(II) sites in LDH-[Ni-salen]. The catalysts were reused several times without losing their catalytic activity and selectivity. The present results may provide a convenient strategy for the preparation of 1-tetralone using layered double hydroxide-based heterogeneous catalyst at ambient temperature for industrial application in near future. 展开更多
关键词 Sulphonato-Salen-Nickel(II) layered double hydroxide Tetralin Oxidation Room Temperature 1-Tetralone
下载PDF
Study on fire-retardant nanocrystalline Mg-Al layered double hydroxides synthesized by microwavecrystallization method 被引量:10
10
作者 ZHANG Zejiang1, XU Chenghua1, QIU Fali1, MEI Xiujuan2, LAN Bin2 & ZHANG Shuosheng2 1. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China 2. Sichuan Fire Research Institute of Public Safety Ministry, Chengdu 611830, China 《Science China Chemistry》 SCIE EI CAS 2004年第6期488-498,共11页
Nanocrystalline Mg-Al layered double hydroxides with the particle size being 10—40 nm were firstly prepared by the technology of the microwave-crystallization and the vari- able-speed addition of the alkali. The obta... Nanocrystalline Mg-Al layered double hydroxides with the particle size being 10—40 nm were firstly prepared by the technology of the microwave-crystallization and the vari- able-speed addition of the alkali. The obtained samples were characterized by TEM and XRD. The roles of the microwave and addition rate of the alkali were also discussed in the present work. The thermal decomposition activation energy of the nano-LDHs was calculated according to their TG, DTG and DSC curves by the Ozawa method. The results showed that the thermal decom- position of the nano-LDHs had four steps. Thereby the decomposition model of the nano-LDHs was supposed according to the analysis of their thermal decomposition. After PS, ABS, HDPE and PVC were filled with the nano-LDHs, their LOI values could be increased up to 28, 27, 26 and 33, respectively. When the fire-retardant coating contained 1.9% of the nano-LDHs that was 0.27 times the dosage of the conventional TiO2, its fire endurance time reached 32.75min that was 7.05 min longer than that of the best coating containing TiO2 according to the model big-panel combustion test method. 展开更多
关键词 layered double hydroxides nanocrystal microwave synthesis thermal decomposition fire-retardant performance.
原文传递
Corrosion Resistance of Superhydrophobic Mg-Al Layered Double Hydroxide Coatings on Aluminum Alloys 被引量:9
11
作者 Fen Zhang Chang-Lei Zhang +3 位作者 Liang Song Rong-Chang Zeng Lan-Yue Cui Hong-Zhi Cui 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第11期1373-1381,共9页
A superhydrophobic surface was successfully constructed to modify the layered double hydroxide (LDH) coatings on aluminum alloy using stearic acid. The characteristics of the coatings were investigated using SEM, XR... A superhydrophobic surface was successfully constructed to modify the layered double hydroxide (LDH) coatings on aluminum alloy using stearic acid. The characteristics of the coatings were investigated using SEM, XRD, FT- IR and XPS. The corrosion resistance of the prepared coatings was studied using potentiodynamic polarization and electrochemical impedance spectrum. The results revealed that the superhydrophobic surface considerably improved the corrosion-resistant performance of the LDH coatings on the aluminum alloy substrate. The formation mechanism of the superhydrophobic surface was proposed. 展开更多
关键词 Aluminum alloy layered double hydroxide SUPERHYDROPHOBIC Stearic acid Corrosion
原文传递
Osteogenesis, angiogenesis and immune response of Mg-Al layered double hydroxide coating on pure Mg 被引量:8
12
作者 Shi Cheng Dongdong Zhang +4 位作者 Mei Li Xuanyong Liu Yu Zhang Shi Qian Feng Peng 《Bioactive Materials》 SCIE 2021年第1期91-105,共15页
Layered double hydroxides(LDHs)are widely studied to enhance corrosion resistance and biocompatibility of Mg alloys,which are promising bone implants.However,the influence of LDH coating on the osteointegration of Mg ... Layered double hydroxides(LDHs)are widely studied to enhance corrosion resistance and biocompatibility of Mg alloys,which are promising bone implants.However,the influence of LDH coating on the osteointegration of Mg implants lacks of a systematic study.In this work,Mg-Al LDH coating was prepared on pure Mg via hydrothermal treatment.The as-prepared Mg-Al LDH coated Mg exhibited better in vitro and in vivo corrosion resistance than bare Mg and Mg(OH)2 coated Mg.In vitro culture of mouse osteoblast cell line(MC3T3-E1)suggested that Mg-Al LDH coated Mg was more favorable for its osteogenic differentiation.In vitro culture of HUVECs revealed that cells cultured in the extract of Mg-Al LDH coated Mg showed superior angiogenic behaviors.More importantly,the immune response of Mg-Al LDH coated Mg was studied by in vitro culturing murine-derived macrophage cell line(RAW264.7).The results verified that Mg-Al LDH coated Mg could induce macrophage polarize to M2 phenotype(anti-inflammatory).Furthermore,the secreted factor in the macrophageconditioned culture medium of Mg-Al LDH group was more suitable for the bone differentiation of rat bone marrow stem cells(rBMSCs)and the angiogenic behavior of human umbilical vein endothelial cells(HUVECs).Finally,the result of femoral implantation suggested that Mg-Al LDH coated Mg exhibited better osteointegration than bare Mg and Mg(OH)2 coated Mg.With favorable in vitro and in vivo performances,Mg-Al LDH is promising as protective coating on Mg for orthopedic applications. 展开更多
关键词 MAGNESIUM layered double hydroxide OSTEOGENESIS ANGIOGENESIS Immune response
原文传递
Study on the coating of nano-scale SiO_2 film on the surface of nanocrystalline Mg-Al layered double hydroxides 被引量:2
13
作者 ZHANG Zejiang1,2,3, MEI Xiujuan2, XU Chenghua1 & QIU Fali1 1. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China 2. Sichuan Fire Research Institute of Public Security Ministry, Chengdu 611830, China 3. Graduate School of the Chinese Academy of Sciences, Beijing 100039, China Correspondence should be addressed to Zhang Zejiang (email: zzjzzjzz@mail.sc.cninfo.net) 《Science China Chemistry》 SCIE EI CAS 2005年第2期107-114,共8页
The coating process of a nano-scale SiO2 film on the nanocrystalline Mg-Al layered double hydroxides via a sol-gel process was investigated. The uniform and dense SiO2film with a thickness of about 5 nm on the nano-LD... The coating process of a nano-scale SiO2 film on the nanocrystalline Mg-Al layered double hydroxides via a sol-gel process was investigated. The uniform and dense SiO2film with a thickness of about 5 nm on the nano-LDHs particles was characterized by the solubility test in the dilute HNO3 or HCl acid, TEM and FT-IR, XRD, TG and DSC. The chemical shifts of binding en- ergies of Al 2p, Mg 2p, Si 2s and O 1s on the coated particles indicate that the coating of the SiO2 nano-film on the surface of the nano-LDHs proceeds through the formation of Mg-O-Si and Al-O-Si bonds. The thermal analysis shows that both the SiO2-coated nano-LDHs and the nano-LDHs have a similar mass loss process, in which there are three obvious stages of mass loss in the temperature range of 40—700℃. Furthermore, the more the coatedamount of SiO2on the surface of the nano-LDHs is, the less the mass loss of the samples is at 700℃.The nano- LDHs have two obvious endothermic peaks at 244.67℃ and 430.13℃, whose corresponding heat absorption capacities are 412.28 J/g and 336.30 J/g, respectively. In contrast, the coated nano-LDHs have only one endothermic peak at 243.60℃ with a heat absorption capacity of 221.25 J/g. 展开更多
关键词 layered double hydroxides nanocrystalline silica coating.
原文传递
Studies on Synthesis and Properties of Mg-Al-nitrate Layered Double Hydroxides 被引量:2
14
作者 Qin Zheng +4 位作者 YANG Chun Guang ZHANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2003年第1期79-82,共4页
A positive Mg-Al-nitrate layered double hydroxides (LDHs) has been synthesized using a non-steady coprecipitation method. The shape, size, chemical composition, electrical property and anion exchange property of the ... A positive Mg-Al-nitrate layered double hydroxides (LDHs) has been synthesized using a non-steady coprecipitation method. The shape, size, chemical composition, electrical property and anion exchange property of the positive nanoparticle were studied by SEM, XRD, FTIR, chemical analysis, spectroanalysis and measuring of electrophoretic mobilities. Preliminary results show the positive nanoparticle is a promising precursor of polymer/LDHs nanocomposite. 展开更多
关键词 layered double hydroxide NANOPARTICLE SYNTHESIS positive.
下载PDF
Preparation of PO_4^(3-),P_2O_7^(4-) Anion-Pillared Nanocrystalline Mg-Al and Zn-Al Layered Double Hydroxides in Microwave Fields
15
作者 ZeJiangZHANG XiuJuanMEI +2 位作者 LiangRongFEN ShaoJieLU FaLiQIU 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第7期867-870,共4页
Using nanocrystalline [Mg-Al-CO3] and [Zn-Al-CO3] as precursors, [Mg-Al-PO4], [Zn-Al-PO4], [Mg-Al-P2O7] and [Zn-Al-P2O7] have been successfully synthesized by a direct reaction with the free PO43- or P2O74- using the ... Using nanocrystalline [Mg-Al-CO3] and [Zn-Al-CO3] as precursors, [Mg-Al-PO4], [Zn-Al-PO4], [Mg-Al-P2O7] and [Zn-Al-P2O7] have been successfully synthesized by a direct reaction with the free PO43- or P2O74- using the microwave techniques and the anion-exchange method. And the samples thus obtained were characterized by TEM, FT-IR and XRD. The results show that the initial interlayer carbonate ions can be completely replaced by the free PO43- or P2O74-under controlled microwave conditions employed for a short time. 展开更多
关键词 NANOCRYSTALLINE the anion-exchange method microwave layered double hydroxides.
下载PDF
Ternary NiCoFe-layered double hydroxide hollow polyhedrons as highly efficient electrocatalysts for oxygen evolution reaction 被引量:6
16
作者 Yongji Qin Fanping Wang +5 位作者 Jing Shang Muzaffar Iqbal Aijuan Han Xiaoming Sun Haijun Xu Junfeng Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期104-107,共4页
With exhaustion of fossil fuels and the deterioration of global environment,widespread and intensive researches have been concentrated on clean and sustainable alternative energy sources,such as metal-air batteries[1]... With exhaustion of fossil fuels and the deterioration of global environment,widespread and intensive researches have been concentrated on clean and sustainable alternative energy sources,such as metal-air batteries[1],fuel cells[2]and water splitting devices[3].Electrocatalytic oxidation of water to O2(oxygen evolution reaction,OER)is a vital chemical process involved in energy storage and conversion from renewable sources in form of molecular fuels such as H2 via water electrolysis,which has attracted a great amount of research efforts in the past few years[4,5].Nowadays,RuO2 and IrO2 are widely used as typical excellent OER electrocatalysts.However,their high-cost and scarce nature restricts the broadly commercial application of those materials[6,7].Hence,there is an urgent demand to develop low cost,highly efficient,and superb stable OER catalysts. 展开更多
关键词 layered double hydroxide HOLLOW Oxygen evolution reaction
下载PDF
Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives 被引量:10
17
作者 Lei Zhou Mingfei Shao +1 位作者 Min Wei Xue Duan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1094-1106,共13页
The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water sp... The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water splitting cells. Layered double hydroxides(LDHs) and their derivatives(e.g., transition metal alloys, oxides, sulfides, nitrides and phosphides) have been adopted as catalysts for various electrochemical reactions, such as oxygen reduction, oxygen evolution, hydrogen evolution, and COreduction, which show excellent activity and remarkable durability in electrocatalytic process. In this review, the synthesis strategies, structural characters and electrochemical performances for the LDHs and their derivatives are described. In addition, we also discussed the effect of electronic and geometry structures to their electrocatalytic activity. The further development of high-performance electrocatalysts based on LDHs and their derivatives is covered by both a short summary and future outlook from the viewpoint of the material design and practical application. 展开更多
关键词 layered double hydroxide DERIVATIVES ELECTROCATALYSIS Oxygen reduction Water splitting CO_2 reduction Electronic structure Hierarchical structure Metal–air battery Fuel cell
下载PDF
2D Layered Double Hydroxide Nanosheets and Their Derivatives Toward E cient Oxygen Evolution Reaction 被引量:11
18
作者 Xueyi Lu Hairong Xue +4 位作者 Hao Gong Mingjun Bai Daiming Tang Renzhi Ma Takayoshi Sasaki 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第7期89-120,共32页
Layered double hydroxides(LDHs)have attracted tremendous research interest in widely spreading applications.Most notably,transition-metal-bearing LDHs are expected to serve as highly active electrocatalysts for oxygen... Layered double hydroxides(LDHs)have attracted tremendous research interest in widely spreading applications.Most notably,transition-metal-bearing LDHs are expected to serve as highly active electrocatalysts for oxygen evolution reaction(OER)due to their layered structure combined with versatile com-positions.Furthermore,reducing the thickness of platelet LDH crystals to nanometer or even molecular scale via cleavage or delamination provides an important clue to enhance the activity.In this review,recent progresses on rational design of LDH nanosheets are reviewed,including direct synthesis via traditional coprecipitation,homogeneous precipitation,and newly developed topochemical oxidation as well as chemical exfoliation of parent LDH crystals.In addition,diverse strategies are introduced to modulate their electrochemical activity by tuning the composition of host metal cations and intercalated counter-anions,and incorporating dopants,cavi-ties,and single atoms.In particular,hybridizing LDHs with conductive components or in situ growing them on conductive substrates to produce freestanding electrodes can further enhance their intrinsic catalytic activity.A brief discussion on future research directions and prospects is also summarized. 展开更多
关键词 layered double hydroxideS NANOSHEETS DERIVATIVES CATALYSTS Oxygen evolution reaction
下载PDF
Effect of Layered Double Hydroxides on Ultraviolet Aging Resistance of SBS Modified Bitumen Membrane 被引量:6
19
作者 徐松 余剑英 +2 位作者 XUE Lihui SUN Yubin XIE Dong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第3期494-499,共6页
Layered double hydroxides (LDHs)/styrene-butadiene-styrene (SBS) eopolymer modified bitumen was prepared by melt blending. The effect of LDHs on the ultraviolet (UV) aging behavior of SBS modified bitumen was in... Layered double hydroxides (LDHs)/styrene-butadiene-styrene (SBS) eopolymer modified bitumen was prepared by melt blending. The effect of LDHs on the ultraviolet (UV) aging behavior of SBS modified bitumen was investigated. The changes of chemical structures of modified bitumen before and after UV aging were characterized by Fourier transform infrared spectroscopy (FTIR). The results show that LDHs obviously reduce the variation of softening point and low temperature flexibility of SBS modified bitumen under different UV radiation intensities, which indicates that the UV aging resistance performance of SBS modified bitumen is improved effectively by LDHs. Compared with SBS modified bitumen, the changes of carbonyl, sulfoxide and butadienyl of LDHs/SBS modified bitumen decrease significantly after UV aging according to FTIR analysis, demonstrating that the oxidation and degradation reactions of SBS modified bitumen were restrained effectively by adding LDHs. 展开更多
关键词 SBS modified bitumen layered double hydroxides UV aging
下载PDF
Ultrafine monolayer Co-containing layered double hydroxide nanosheets for water oxidation 被引量:3
20
作者 Xiaodan Jia Xin Zhang +7 位作者 Jiaqing Zhao Yufei Zhao Yunxuan Zhao Geoffrey I.N.Waterhouse Run Shi Li-Zhu Wu Chen-Ho Tung Tierui Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期57-63,共7页
For many two-dimensional(2D)materials,low coordination edges and corner sites offer greatly enhanced catalytic performance compared to basal sites,motivating the search for new synthetic approaches towards ultrathin a... For many two-dimensional(2D)materials,low coordination edges and corner sites offer greatly enhanced catalytic performance compared to basal sites,motivating the search for new synthetic approaches towards ultrathin and ultrafine 2D nanomaterials with high specific surface areas.To date,the synthesis of catalysts that are both ultrathin(monolayer)and ultrafine(lateral size<10nm)has proven extremely challenging.Herein,using a facile ultrasonic exfoliation procedure,we describe the successful synthesis of ultrafine ZnCo-LDH nanosheets(denoted as ZnCo-UF)with a size^3.5 nm and thickness^0.5 nm.The single layer ZnCo-UF nanosheets possess an abundance of oxygen vacancies(Vo)and unsaturated coordination s让es,thereby affording outstanding electrocatalytic water oxidation performance.DFT calculations confirmed that Vo on the surface of ZnCo-UF enhanced H20 adsorption via increasing the electropositivity of the nanosheets. 展开更多
关键词 layered double hydroxideS ULTRAFINE NANOSHEETS OXIDATION evolution reaction
下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部