Mg-Al layered double hydroxide intercalated with CO_(3)^(2-)(CO_(3)·Mg-Al LDH) is effective for treating HCl exhaust gas.HCl reacts with CO_(3)^(2-) in CO_(3)·Mg-Al LDH, resulting in the formation of Cl·...Mg-Al layered double hydroxide intercalated with CO_(3)^(2-)(CO_(3)·Mg-Al LDH) is effective for treating HCl exhaust gas.HCl reacts with CO_(3)^(2-) in CO_(3)·Mg-Al LDH, resulting in the formation of Cl·Mg-Al LDH.We propose that CO_(2) can be used for the desorption of Cl^(-)from Cl·Mg-Al LDH to regenerate CO_(3)·Mg-Al LDH.Herein,we studied the desorption of a from CI-Mg-Al LDH by adding water to Cl·Mg-Al LDH and blowing CO_(2) into it.We also analyzed the effects of temperature and water addition speed on the desorption of CI^(-)from Cl·Mg-Al LDH.Our results show that the added water adhered to CI·Mg-Al LDH and that CO_(2) in the gaseous phase was dissolved in this adhered water,thus generating CO_(3)^(2-).Therefore,anion exchange occurred between CO_(3)^(2-) and Cl^(-)in the Cl·Mg-Al LDH,thus desorbing Cl^(-).展开更多
Mg-Al layered double hydroxides (LDH) with different particle sizes were prepared using different aging times at high supersaturation by a new method developed in our laboratory. The key features of this method are a ...Mg-Al layered double hydroxides (LDH) with different particle sizes were prepared using different aging times at high supersaturation by a new method developed in our laboratory. The key features of this method are a very rapid mixing and nucleation process followed by a separate aging process. By calcination of LDH at 500°C, mesoporous Mg-Al composite oxides with an extremely narrow pore size distribution were produced. The crystal structure of the Mg-Al composite oxides was a multiphasic one consisting of MgO-like crystals and a layered material.展开更多
文摘Mg-Al layered double hydroxide intercalated with CO_(3)^(2-)(CO_(3)·Mg-Al LDH) is effective for treating HCl exhaust gas.HCl reacts with CO_(3)^(2-) in CO_(3)·Mg-Al LDH, resulting in the formation of Cl·Mg-Al LDH.We propose that CO_(2) can be used for the desorption of Cl^(-)from Cl·Mg-Al LDH to regenerate CO_(3)·Mg-Al LDH.Herein,we studied the desorption of a from CI-Mg-Al LDH by adding water to Cl·Mg-Al LDH and blowing CO_(2) into it.We also analyzed the effects of temperature and water addition speed on the desorption of CI^(-)from Cl·Mg-Al LDH.Our results show that the added water adhered to CI·Mg-Al LDH and that CO_(2) in the gaseous phase was dissolved in this adhered water,thus generating CO_(3)^(2-).Therefore,anion exchange occurred between CO_(3)^(2-) and Cl^(-)in the Cl·Mg-Al LDH,thus desorbing Cl^(-).
基金This work was supported by the Sinopec (Grant No. X599012).
文摘Mg-Al layered double hydroxides (LDH) with different particle sizes were prepared using different aging times at high supersaturation by a new method developed in our laboratory. The key features of this method are a very rapid mixing and nucleation process followed by a separate aging process. By calcination of LDH at 500°C, mesoporous Mg-Al composite oxides with an extremely narrow pore size distribution were produced. The crystal structure of the Mg-Al composite oxides was a multiphasic one consisting of MgO-like crystals and a layered material.