介绍了含长周期堆垛有序结构(Long period stacking order,简称LPSO结构)的Mg-RE-Zn(-Zr)合金的研究现状,重点分析了Mg-Gd-Zn(-Zr)合金中14H-LPSO结构的最新研究进展,综述了等通道角挤压和搅拌摩擦加工工艺在镁合金强韧化中的应用现状,...介绍了含长周期堆垛有序结构(Long period stacking order,简称LPSO结构)的Mg-RE-Zn(-Zr)合金的研究现状,重点分析了Mg-Gd-Zn(-Zr)合金中14H-LPSO结构的最新研究进展,综述了等通道角挤压和搅拌摩擦加工工艺在镁合金强韧化中的应用现状,提出了当前Mg-Gd-Zn(-Zr)合金研究需解决的主要问题和未来研究方向,展望了等通道角挤压和搅拌摩擦加工工艺在Mg-Gd-Zn(-Zr)合金强韧化方面的应用前景。展开更多
Dry sliding wear tests were performed on a Mg-10Y-4Gd-1.5Zn-0.4Zr alloy using a Ball-on-Flat type wear apparatus against an AISI 52100 type bearing steel ball counterface. The wear rates were measured within a load ra...Dry sliding wear tests were performed on a Mg-10Y-4Gd-1.5Zn-0.4Zr alloy using a Ball-on-Flat type wear apparatus against an AISI 52100 type bearing steel ball counterface. The wear rates were measured within a load range of 3-25 N, a sliding speed range of 0.03-0.3 m/s and a sliding temperature range of 25-200 ℃ at a constant sliding distance of 400 m. The morphologies of the worn surfaces and wear debris were studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Comparatively, the wear properties of a hypereutectic Al-Si aluminium alloy under the same condition were measured. The results indicate that the wear rates of Mg-10Y-4Gd-1.5Zn-0.4Zr alloy are lower than that of cast+T6 AC9B aluminium alloy. The dominant mechanism of cast+T6 Mg-10Y-4Gd-1.5Zn-0.4Zr alloy is abrasion wear mixed with other wear mechanisms, which tends to be an abrasion and plastic deformation wear at high normal load such as 10-25 N, abrasion and plastic deformation wears with small participation of delamination and oxidative wears at high sliding speed such as 0.12-0.3 m/s, and an oxidative and abrasion wear at high test temperature such as 100-200 ℃. The Mg12Y1Zn1 phase in Mg-10Y-4Gd-1.5Zn-0.4Zr alloy plays an important role in the wear rate.展开更多
文摘介绍了含长周期堆垛有序结构(Long period stacking order,简称LPSO结构)的Mg-RE-Zn(-Zr)合金的研究现状,重点分析了Mg-Gd-Zn(-Zr)合金中14H-LPSO结构的最新研究进展,综述了等通道角挤压和搅拌摩擦加工工艺在镁合金强韧化中的应用现状,提出了当前Mg-Gd-Zn(-Zr)合金研究需解决的主要问题和未来研究方向,展望了等通道角挤压和搅拌摩擦加工工艺在Mg-Gd-Zn(-Zr)合金强韧化方面的应用前景。
基金Project(51404082)supported by the National Natural Science Foundation of ChinaProject(E201442)supported by the Natural Science Foundation of Heilongjiang Province,China+2 种基金Project(12531116)supported by the Foundation of Educational Committee of Heilongjiang Province,ChinaProject(2013RFQXJ137)supported by the Harbin Special Funds for Creative Talents in Science and Technology,ChinaProject(201510)supported by Science Funds for the Young Innovative Talents of HUST,China
文摘Dry sliding wear tests were performed on a Mg-10Y-4Gd-1.5Zn-0.4Zr alloy using a Ball-on-Flat type wear apparatus against an AISI 52100 type bearing steel ball counterface. The wear rates were measured within a load range of 3-25 N, a sliding speed range of 0.03-0.3 m/s and a sliding temperature range of 25-200 ℃ at a constant sliding distance of 400 m. The morphologies of the worn surfaces and wear debris were studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Comparatively, the wear properties of a hypereutectic Al-Si aluminium alloy under the same condition were measured. The results indicate that the wear rates of Mg-10Y-4Gd-1.5Zn-0.4Zr alloy are lower than that of cast+T6 AC9B aluminium alloy. The dominant mechanism of cast+T6 Mg-10Y-4Gd-1.5Zn-0.4Zr alloy is abrasion wear mixed with other wear mechanisms, which tends to be an abrasion and plastic deformation wear at high normal load such as 10-25 N, abrasion and plastic deformation wears with small participation of delamination and oxidative wears at high sliding speed such as 0.12-0.3 m/s, and an oxidative and abrasion wear at high test temperature such as 100-200 ℃. The Mg12Y1Zn1 phase in Mg-10Y-4Gd-1.5Zn-0.4Zr alloy plays an important role in the wear rate.