To control the superplastic flow and fracture and examine the variation in deformation energy,the stress and grain size of Mg-7.28Li-2.19Al-0.091Y alloy were obtained using tensile testing and microstructure quantific...To control the superplastic flow and fracture and examine the variation in deformation energy,the stress and grain size of Mg-7.28Li-2.19Al-0.091Y alloy were obtained using tensile testing and microstructure quantification,and new high temperature deformation energy models were established.Results show that the grain interior deformation energy increases with increasing the strain rate and decreases with increasing the temperature.The variation in the grain boundary deformation energy is opposite to that in the grain interior deformation energy.At a given temperature,critical cavity nucleation energy decreases with increasing strain rate and cavity nucleation becomes easy,whereas at a given strain rate,critical cavity nucleation energy increases with increasing temperature and cavity nucleation becomes difficult.The newly established models of the critical cavity nucleation radius and energy provide a way for predicting the initiation of microcrack and improving the service life of the forming parts.展开更多
To obtain magnesium alloys with a low density and improved mechanical properties,Y element was added into Mg−4Li−3Al(wt.%)alloys,and the effect of Y content on microstructure evolution and mechanical properties was in...To obtain magnesium alloys with a low density and improved mechanical properties,Y element was added into Mg−4Li−3Al(wt.%)alloys,and the effect of Y content on microstructure evolution and mechanical properties was investigated by using optical microscopy,scanning electron microscopy and tensile tests.The results show that mechanical properties of as-cast Mg−4Li−3Al alloys with Y addition are significantly improved as a result of hot extrusion.The best comprehensive mechanical properties are obtained in hot-extruded Mg−4Li−3Al−1.5Y alloy,which possesses high ultimate tensile strength(UTS=248 MPa)and elongation(δ=27%).The improvement of mechanical properties of hot-extruded Mg−4Li−3Al−1.5Y alloy was mainly attributed to combined effects of grain refinement,solid solution strengthening and precipitation strengthening.展开更多
基金Project(51334006)supported by the National Natural Science Foundation of China
文摘To control the superplastic flow and fracture and examine the variation in deformation energy,the stress and grain size of Mg-7.28Li-2.19Al-0.091Y alloy were obtained using tensile testing and microstructure quantification,and new high temperature deformation energy models were established.Results show that the grain interior deformation energy increases with increasing the strain rate and decreases with increasing the temperature.The variation in the grain boundary deformation energy is opposite to that in the grain interior deformation energy.At a given temperature,critical cavity nucleation energy decreases with increasing strain rate and cavity nucleation becomes easy,whereas at a given strain rate,critical cavity nucleation energy increases with increasing temperature and cavity nucleation becomes difficult.The newly established models of the critical cavity nucleation radius and energy provide a way for predicting the initiation of microcrack and improving the service life of the forming parts.
基金The work was supported by the National Natural Science Foundation of China(No.51401115)the Promoted Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province,China(No.BS2013CL034)partially by the Fundamental Research Funds of Shandong University,China(2016JC016).
文摘To obtain magnesium alloys with a low density and improved mechanical properties,Y element was added into Mg−4Li−3Al(wt.%)alloys,and the effect of Y content on microstructure evolution and mechanical properties was investigated by using optical microscopy,scanning electron microscopy and tensile tests.The results show that mechanical properties of as-cast Mg−4Li−3Al alloys with Y addition are significantly improved as a result of hot extrusion.The best comprehensive mechanical properties are obtained in hot-extruded Mg−4Li−3Al−1.5Y alloy,which possesses high ultimate tensile strength(UTS=248 MPa)and elongation(δ=27%).The improvement of mechanical properties of hot-extruded Mg−4Li−3Al−1.5Y alloy was mainly attributed to combined effects of grain refinement,solid solution strengthening and precipitation strengthening.