期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Microstructure and mechanical properties of AZ31-Mg_2Si in situ composite fabricated by repetitive upsetting 被引量:4
1
作者 郭炜 王渠东 +2 位作者 叶兵 周浩 刘鉴锋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3755-3761,共7页
AZ31-4.6% Mg2Si (mass fraction) composite was prepared by conventional casting method. Repetitive upsetting (RU) was applied to severely deforming the as-cast composite at 400 ℃ for 1, 3, and 5 passes. Finite ele... AZ31-4.6% Mg2Si (mass fraction) composite was prepared by conventional casting method. Repetitive upsetting (RU) was applied to severely deforming the as-cast composite at 400 ℃ for 1, 3, and 5 passes. Finite element analysis of the material flow indicates that deformation concentrates in the bottom region of the sample after 1 pass, and much more uniform deformation is obtained after 5 passes. During multi-pass RU process, both dendritic and Chinese script type Mg2Si phases are broken up into smaller particles owing to the shear stress forced by the matrix. With the increasing number of RU passes, finer grain size and more homogeneous distribution of Mg2Si particles are obtained along with significant enhancement in both strength and ductility. AZ31-4.6%Mg2Si composite exhibits tensile strength of 284 MPa and elongation of 9.8%after 5 RU passes at 400 ℃ compared with the initial 128 MPa and 5.4%of original AZ31-4.6%Mg2Si composite. 展开更多
关键词 AZ31-Mg2si composite Mg2si particle repetitive upsetting microstructure mechanical properties
下载PDF
Effect of ultrasonic on morphology of primary Mg_2Si in in-situ Mg_2Si/Al composite 被引量:5
2
作者 张家陶 赵宇光 +1 位作者 徐晓峰 刘晓波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2852-2856,共5页
Effects of ultrasonic on morphologies of primary Mg2Si crystals in in-situ Mg2Si/A1 composite were investigated by metallographic microscopy and field emission scanning electron microscopy. The results show that the m... Effects of ultrasonic on morphologies of primary Mg2Si crystals in in-situ Mg2Si/A1 composite were investigated by metallographic microscopy and field emission scanning electron microscopy. The results show that the mean grain size of primary MgESi crystals is refined from 150 to 20 μm by high intensity ultrasonic, and the morphologies of primary MgESi crystals are changed as well. Optical microscopy reveals that primary MgESi crystals without ultrasonic vibration exhibit coarse particles with cavities, in which eutectic structures grow. However, primary Mg2Si crystals with ultrasonic vibration appear fine grains without any cavity. Three-dimensional morphologies of primary Mg2Si without ultrasonic vibration display octahedron and tetrakaidecahedron with hopper-like hole in the crystals. After ultrasonic vibration, primary Mg2Si particles become solid crystals with rounded comers and edges. 展开更多
关键词 ULTRASONIC Mg2si/AI composite MG2si MORPHOLOGY grain refinement
下载PDF
Influence of solution treatment on microstructure and properties of in-situ Mg_2Si/AZ91D composites 被引量:4
3
作者 彭蕾 陈刚 +2 位作者 赵玉涛 黄康 邵阳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第11期2365-2371,共7页
The influence of solution treatment on the microstructure and properties of Mg2Si/AZ91D composites fabricated from Mg-SiO2 system via in-situ processing method was investigated.The results show that coarse Chinese scr... The influence of solution treatment on the microstructure and properties of Mg2Si/AZ91D composites fabricated from Mg-SiO2 system via in-situ processing method was investigated.The results show that coarse Chinese script shape Mg2Si phases can be formed by adding SiO2 into AZ91D magnesium alloy with Si content up to 1.5% of the alloy melt.During solution treatment,the morphology and distribution of the coarse Chinese script shape Mg2Si phases are modified.Meanwhile,the β-Mg17Al12 phase is dissolved into the magnesium matrix.With increasing holding time,the coarse Mg2Si phases tend to dissolve,break and spheroidize.After solution treatment at 420 ℃ for 16 h,Mg2Si phases become the finest and relatively well-distributed phase.The tensile strength and elongation are increased by 14.9% and 38.9%,respectively.It is believed that the Mg2Si phases continuously dissolve and break,and finally the spheroidized Mg2Si particles are obtained due to the interface tension of Mg2Si/Mg interface. 展开更多
关键词 Mg2si/AZ91D composites solution treatment spheroidized Mg2si particle interface tension
下载PDF
Preparation and wear properties of TiB_2/Al-30Si composites via in-situ melt reactions under high-energy ultrasonic field 被引量:3
4
作者 张松利 董宪伟 +5 位作者 赵玉涛 刘满平 陈刚 张振坤 张宇荧 高雪华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期3894-3900,共7页
TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The ... TiB2/Al-30Si composites were fabricated via in-situ melt reaction under high-energy ultrasonic field. The microstructure and wear properties of the composite were investigated by XRD, SEM and dry sliding testing. The results indicate that TiB2 reinforcement particles are uniformly distributed in the aluminum matrix under high-energy ultrasonic field. The morphology of the TiB2 particles is in circle-shape or quadrangle-shape, and the size of the particles is 0.1-1.5μm. The primary silicon particles are in quadrangle-shape and the average size of them is about 10μm. Hardness values of the Al-30Si matrix alloy and the TiB2/Al-30Si composites considerably increase as the high energy ultrasonic power increases. In particular, the maximum hardness value of the in-situ composites is about 1.3 times as high as that of the matrix alloy when the ultrasonic power is 1.2 kW, reaching 412 MPa. Meanwhile, the wear resistance of the in-situ TiB2/Al-30Si composites prepared under high-energy ultrasonic field is obviously improved and is insensitive to the applied loads of the dry sliding testing. 展开更多
关键词 TiB2/Al-30si composite in-situ melt reaction high-energy ultrasonic field wear properties
下载PDF
Microstructure evolution,mechanical properties and fracture behavior of Al-xSi/AZ91D bimetallic composites prepared by a compound casting
5
作者 Guangyu Li Wenming Jiang +3 位作者 Feng Guan Junwen Zhu Yang Yu Zitian Fan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1944-1964,共21页
In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically... In this paper,the effect of the Si content on microstructure evolution,mechanical properties,and fracture behavior of the Al-xSi/AZ91D bimetallic composites prepared by compound casting was investigated systematically.The obtained results showed that all the Al-xSi/AZ91D bimetallic composites had a metallurgical reaction layer(MRL),whose thickness increased with increasing Si content for the hypoeutectic Al-Si/AZ91D composites,while the hypereutectic Al-Si/AZ91D composites were opposite.The MRL included eutectic layer(E layer),intermetallic compound layer(IMC layer)and transition region layer(T layer).In the IMC layer,the hypereutectic Al-Si/AZ91D composites contained some Si solid solution and flocculent Mg_(2)Si+Al-Mg IMCs phases not presented in the hypoeutectic Al-Si/AZ91D composites.Besides,increasing Si content,the thickness proportion of the T layer increased,forming an inconsistent preferred orientation of the MRL.The shear strengths of the Al-xSi/AZ91D bimetallic composites enhanced with increasing Si content,and the Al-15Si/AZ91D composite obtained a maximum shear strength of 58.6 MPa,which was 73.4% higher than the Al-6Si/AZ91D composite.The fractures of the Al-xSi/AZ91D bimetallic composites transformed from the T layer into the E layer with the increase of the Si content.The improvement of the shear strength of the Al-xSi/AZ91D bimetallic composites was attributed to the synergistic action of the Mg_(2)Si particle reinforcement,the reduction of oxidizing inclusions and the ratio of Al-Mg IMCs as well as the orientation change of the MRL. 展开更多
关键词 Al/Mg bimetallic composites si content Mg_(2)si reinforcement Microstructure Mechanical properties Fracture behavior
下载PDF
Microstructure and dry sliding wear behavior of cast Al-Mg_2Si in-situ metal matrix composite modified by Nd 被引量:20
6
作者 Xiao-Feng Wu Guan-Gan Zhang Fu-Fa Wu 《Rare Metals》 SCIE EI CAS CSCD 2013年第3期284-289,共6页
The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, bo... The microstructure and dry sliding wear behav- ior of cast Al-18 wt% MgaSi in-situ metal matrix com- posite modified by Nd were investigated. Experimental results show that, after introducing a proper amount of Nd, both primary and eutectic Mg2Si in the Al-18 wt% Mg2Si composite are well modified. The morphology of primary Mg2Si is changed from irregular or dendritic to polyhedral shape, and its average particle size is signifi- cantly decreased. Moreover, the morphology of the eutectic MgzSi phase is altered from flake-like to very short fibrous or dot-like. The wear rates and friction coefficient of the composites with Nd are lower than those without Nd. Furthermore, the addition of 0.5 wt% Nd changes the wear mechanism of the composite from the combination of abrasive, adhesive, and delamination wear without Nd into a single mild abrasion wear with 0.5 wt% Nd. 展开更多
关键词 Al/Mg2si composites Nd modification MICROSTRUCTURE Dry sliding wear behavior
下载PDF
Characteristics of two Al based functionally gradient composites reinforced by primary Si particles and Si/in situ Mg_2Si particles in centrifugal casting 被引量:14
7
作者 翟彦博 刘昌明 +2 位作者 王开 邹茂华 谢勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第3期361-370,共10页
Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structura... Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structural and mechanical characters were compared.It is found that the composite reinforced with primary Si particles takes a characteristic of particles distribution both in the inner and outer layers.However,composite reinforced with primary Si/Mg2Si particles jointly takes a characteristic of particles distribution only in the inner layer and shows a sudden change of particles distribution across the section of inner and outer layers.The hardness and wear resistance of Al-19Si-5Mg tube in the inner layer are greatly higher than that in the other layers of Al-19Si-5Mg tube and Al-19Si tube.Theoretical analysis reveals that the existence of Mg2Si particles is the key factor to form this sudden change of gradient distribution of two kinds of particles.Because Mg2Si particles with a lower density have a higher centripetal moving velocity than primary Si particles,in a field of centrifugal force,they would collide with primary Si particles and then impel the later to move together forward to the inner layer of the tube. 展开更多
关键词 centrifugal casting functionally gradient composites in situ primary si particles in situ Mg2si particles
下载PDF
Effect of Bi modification treatment on microstructure,tensile properties,and fracture behavior of cast Al-Mg_2Si metal matrix composite 被引量:9
8
作者 Wu Xiaofeng Wang Zhe +1 位作者 Zhang Guangan Wu Fufa 《China Foundry》 SCIE CAS 2013年第1期18-23,共6页
Bi has a good modification effect on the hypoeutectic Al-Si alloy, and the morphology of eutectic Si changes from coarse acicular to fine fibrous. Based on the similarity between Mg2Si and Si phases in crystalline str... Bi has a good modification effect on the hypoeutectic Al-Si alloy, and the morphology of eutectic Si changes from coarse acicular to fine fibrous. Based on the similarity between Mg2Si and Si phases in crystalline structure and crystallization process, the present study investigated the effects of different concentrations of Bi on the microstructure, tensile properties, and fracture behavior of cast Al-15wt.%Mg2Si in-situ metal matrix composite. The results show that the addition of the proper amount of Bi has a significant modification effect on both primary and eutectic Mg2Si in the Al-15wt.%Mg2Si composite. With an increase in Bi content from 0 to lwt.%, the morphology of the primary Mg2Si is changed from irregular or dendritic to polyhedral shape; and its average particle size is significantly decreased from 70 to 6 μm. Moreover, the morphology of the eutectic Mg2Si phase is altered from flake-like to very short fibrous or dot-like. When the Bi addition exceeds 4.0wt.%, the primary Mg2Si becomes coarse again. However, the eutectic Mg2Si still exhibits the modified morphology. Tensile tests reveal that the Bi addition can improve the tensile strength and ductility of the material. Compared with those of the unmodified composite, the ultimate tensile strength and percentage elongation after fracture with 1.0wt.% Bi increase 51.2% and 100%, respectively. At the same time, the Bi addition changes the fracture behavior from brittle to ductile. 展开更多
关键词 AI/Mg2si composites CASTING Bi addition microstructural characterization tensile properties
下载PDF
Effect of SiC particle addition on microstructure of Mg_2Si/Al composite 被引量:8
9
作者 Zhao Yuguang Liu Xiaobo +1 位作者 Yang Yuanyuan Bian Tianjun 《China Foundry》 SCIE CAS 2014年第2期91-97,共7页
In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex sit... In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex situ stir casting. The as-cast microstructure containing primary Mg2Si and SiC particles that distribute homogenously in AI matrix was successfully achieved. The effects of SiC particle addition on the microstructure of Mg2Si/AI composites were investigated by using scanning electron microscopy (SEM) and XRD. The results show that, with increasing the fraction of the SiC particles from 5wt.% to 10wt.%, the morphologies of the primary Mg2Si particulates in the prepared samples remain polygonal, but the size of the primary phase decreases slightly. However, when the SiC particle addition reaches 15wt.%, the morphologies of the primary Mg2Si particulates change partially from polygonal to quadrangular with a decrease in size from 50 pm to 30 μm. The size of primary AI dendrites decreases with increasing fraction of the SiC particles from 0wt.% to 15wt.%. The morphology of the eutectic Mg2Si phase changes from a fiber-form to a short fiber-form and/or a dot-like shape with increasing fraction of the SiC particles. Furthermore, no significant change in dendrite arm spacing (DAS) was observed in the presence of SiC particles. 展开更多
关键词 Mg2si/Al matrix composite siC particles MICROSTRUCTURE solidifi cation
下载PDF
Effect of Fe-impurity on tribological properties of Al-15Mg_2Si composite 被引量:4
10
作者 A.NADIM R.TAGHIABADI +2 位作者 A.RAZAGHIAN M.T.NOGHANI M.H.GHONCHEH 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第6期1084-1093,共10页
The effect of Fe-impurity(0.2%-2%, mass fraction) on the microstructure, dry sliding wear, and friction properties of Al-15 Mg2 Si composite was investigated using a pin-on-disk tester under the applied pressures of... The effect of Fe-impurity(0.2%-2%, mass fraction) on the microstructure, dry sliding wear, and friction properties of Al-15 Mg2 Si composite was investigated using a pin-on-disk tester under the applied pressures of 0.25, 0.5 and 1 MPa at a constant sliding speed of 0.13 m/s. According to the results, Fe modified the primary Mg2 Si particles from irregular dendritic form to smaller particles with polyhedral shapes, refined the pseudo-eutectic structure, and led to the formation of hard b-Al5 Fe Si platelets in the matrix. In spite of hardness improvement by these microstructural changes, the resistance of the composite against dry sliding wear was impaired. SEM examination of the worn surfaces, wear debris, and subsurface regions confirmed the negative effect of b-phase on the tribological properties. It was found that b-particles were fractured easily, thereby decreasing the potential of the substrate to resist against sliding stresses and giving rise to the instability and easy detachment of tribolayer as large delaminated debris. The friction results also revealed that Fe slightly decreased the average friction coefficient, but increased the fluctuation in friction. 展开更多
关键词 Al-Mg2si in-situ composite TRIBOLOGY sliding wear FRICTION
下载PDF
Microstructure and Mechanical Behavior of in Situ Primary Si/Mg_2Si Locally Reinforced Aluminum Matrix Composites Piston by Centrifugal Casting 被引量:3
11
作者 HAO Xuhong LIU Changming PAN Dengliang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第4期656-660,共5页
Al-Si pistons are frequently damaged by burning piston top surface due to elevated combustion temperature, and by rubbing the first ring groove against the engine cylinder liner. To prevent piston from these damages, ... Al-Si pistons are frequently damaged by burning piston top surface due to elevated combustion temperature, and by rubbing the first ring groove against the engine cylinder liner. To prevent piston from these damages, some technologies were invented, such as mounting high Ni cast iron ring around the first ring groove in Al alloy piston body and thermal resistant steel on piston top surface, and fabricating Al composite pistons by squeeze casting for enhancing the whole or local piston performance. In this paper, composite pistons locally reinforced with in situ primary Si and primary Mg2Si particles are fabricated by centrifugal casting. The microstructure characteristics, hardness and wear resistance of the composite piston are investigated and the motion characteristic of the in situ particles in centrifugal field is analyzed. The results of the experiments show that primary Si and Mg2Si particles mix up with each other in melt and segregate at the regions of piston top and piston ring grooves under the effect of centrifugal force. Particulate reinforced regions have a higher hardness and better wear resistance compared with the unreinforced regions and this performance increases after heat treatment. The analysis result of particle movement shows that, primary Si and primary Mg2Si particles move at approximately the same velocity in the centrifugal field, because of the growth of primary Si and fusion after colliding between primary Si particles, which compromised the velocity difference of primary Si and primary Mg2Si particles caused by the difference of their densities. Research results have some theory significance and applicative value of project in development of new aluminum matrix composites piston products. 展开更多
关键词 PISTON centrifugal casting in situ composite primary si MG2si
下载PDF
Structure and Mechanical Properties of Al-based Gradient Composites Reinforced with Primary Si and Mg_2Si Particles through Centrifugal Casting 被引量:3
12
作者 翟彦博 MA Xiuteng MEI Zhen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期813-818,共6页
The structure and mechanical properties of a new type of Al-based discontinuous gradient composites prepared by using the ternary AI-19Si-5Mg alloys as the raw material adopting the centrifugal casting method were inv... The structure and mechanical properties of a new type of Al-based discontinuous gradient composites prepared by using the ternary AI-19Si-5Mg alloys as the raw material adopting the centrifugal casting method were investigated. Structurally, the composites are divided into two zones: a reinforced zone with the high volume fraction of primary Si and Mg2Si particles and an unreinforced zone with no or a few particles. In the reinforced zone, the primary particles are evenly distributed, with the sizes of the primary Si particles 80-120 μm, and that of primary Mg2Si particles 20-50 μm. The properties test results show the reinforced zone has higher Rockwell hardness and better wear resistance than the unreinforced zone, due to the complementary reinforcement relationship between the primary Si and Mg2Si particles and their high volume fraction. 展开更多
关键词 gradient composites centrifugal casting primary si primary Mg2si
下载PDF
Effect of Sb on microstructure and mechanical properties of Mg_2Si/Al-Si composites 被引量:4
13
作者 任波 刘忠侠 +4 位作者 赵瑞锋 张天清 刘志勇 王明星 翁永刚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第8期1367-1373,共7页
The effect of Sb on the microstructure and mechanical properties of Mg2Si/Al-Si composites was investigated.The results show that Sb can improve the microstructure and mechanical properties of Mg2Si/Al-Si composites.W... The effect of Sb on the microstructure and mechanical properties of Mg2Si/Al-Si composites was investigated.The results show that Sb can improve the microstructure and mechanical properties of Mg2Si/Al-Si composites.When the content of Sb is 0.4%,the morphology of primary Mg2Si changes from dendrites to fine particles,the average size of Mg2Si particles is refined from 52 to 25μm,and the ultimate tensile strength and elongation of the composites increase from 102.1 MPa and 0.26% to 138.6 MPa and 0.36%,respectively.The strengthening mechanism can be attributed to the fine-grain strengthening.However,excessive Sb is disadvantageous to the modification of the composites. 展开更多
关键词 Mg2si/Al-si composite SB mechanical property fine-grain strengthening
下载PDF
Rheological behavior of semi-solid Mg_2Si/AM60 magnesium matrix composites at steady state 被引量:4
14
作者 胡勇 何柏林 闫洪 《中国有色金属学会会刊:英文版》 CSCD 2010年第S3期883-887,共5页
The microstructure and rheological behavior of semi-solid Mg2Si/AM60 magnesium matrix composite at steady state were investigated.The results show that the primary α-Mg phases are knapped by mechanical stirring and t... The microstructure and rheological behavior of semi-solid Mg2Si/AM60 magnesium matrix composite at steady state were investigated.The results show that the primary α-Mg phases are knapped by mechanical stirring and the Chinese script type reinforced Mg2Si phases exist in liquid phase and grain boundary.The analysis of apparent viscosity indicates that the apparent viscosity of semi-solid Mg2Si/AM60 magnesium matrix composite at steady state increases with increasing the volume fraction of Mg2Si and solid fraction of primary α-Mg,but decreases with increasing the shearing rate and shearing time,and the apparent viscosity keeps stable when shearing time reaches 300 s. 展开更多
关键词 rheological behavior MG2si SEMI-SOLID magnesium matrix composite APPARENT viscosity
下载PDF
Influence of Sb modification on microstructures and mechanical properties of Mg2 Si/AM60 composites 被引量:3
15
作者 闫洪 胡勇 吴孝泉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期411-415,共5页
The refining effect and mechanism of Sb on Mg2Si and the microstructure of the matrix were investigated.The results indicate that there are Mg3Sb2 particles in the composites with the addition of Sb,and Mg3Sb2 can pro... The refining effect and mechanism of Sb on Mg2Si and the microstructure of the matrix were investigated.The results indicate that there are Mg3Sb2 particles in the composites with the addition of Sb,and Mg3Sb2 can promote the formation of fine polygonal type Mg2Si by providing nucleation site.Meanwhile,the grain size of Sb modified alloy is finer than that of the matrix. The improved microstructure results in the improvement of mechanical properties.The ultimate tensile strength is increased by 12.2%with the addition of 0.8%Sb. 展开更多
关键词 MG2si Sb modification magnesium matrix composites heterogeneous nucleation mechanical property
下载PDF
Fabrication of Fine-Grained Si_3N_4-Si_2N_2O Composites by Sintering Amorphous Nano-sized Silicon Nitride Powders 被引量:4
16
作者 骆俊廷 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第3期97-99,共3页
Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g... Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ . 展开更多
关键词 si3N4-si2N2O composite in-situ reaction amorphous nano-sized silicon nitride
下载PDF
Microstructure and mechanical properties of Al-Mg_2Si composite fabricated in-situ by vibrating cooling slope 被引量:3
17
作者 Shaya SAFFARI Farshad AKHLAGHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第4期604-612,共9页
An innovative semisolid technique termed as vibrating cooling slope(VCS)has been applied to producing in-situ Al-25%Mg2Si(mass fraction)composite.The molten Al-16.5Mg-9.4%Si(mass fraction)alloy with 100°C superhe... An innovative semisolid technique termed as vibrating cooling slope(VCS)has been applied to producing in-situ Al-25%Mg2Si(mass fraction)composite.The molten Al-16.5Mg-9.4%Si(mass fraction)alloy with 100°C superheat was poured on the surface of an inclined copper plate(set at 45°inclined angle)while it was vibrated at a frequency of 40 Hz and an amplitude of 400μm.After travelling the length of 40 cm on the slope,the resultant semisolid alloy was cast into a steel mold.For the purpose of comparison,reference composite samples were made by gravity casting(GC)and conventionally still cooling slope casting(CS)methods using the same alloy under identical conditions.The samples were hot extruded at 500°C.It was concluded that the size of Mg2Si particles was decreased by about 50%and 70%for the CS and VCS produced samples respectively when compared to that of the GC produced sample.Despite of their higher porosity contents,both the as-cast and hot-extruded VCS processed samples exhibited higher hardness,shear yield stress(SYS)and ultimate shear strength(USS)values as compared with their GC produced counterparts.These results were attributed to the refined and modified microstructure obtained via this newly developed technique. 展开更多
关键词 in-situ composite Al-Mg2si alloy semi-solid processing vibrating cooling slope MICROSTRUCTURE shear punch test
下载PDF
Effect of reinforcement amount, mold temperature, superheat, and mold thickness on fluidity of in-situ Al-Mg_2Si composites 被引量:2
18
作者 Reza Vatankhah Barenji 《China Foundry》 SCIE 2018年第1期66-74,共9页
In the present study, the effects of mold temperature, superheat, mold thickness, and Mg_2Si amount on the fluidity of the Al-Mg_2Si as-cast in-situ composites were investigated using the mathematical models. Composit... In the present study, the effects of mold temperature, superheat, mold thickness, and Mg_2Si amount on the fluidity of the Al-Mg_2Si as-cast in-situ composites were investigated using the mathematical models. Composites with different amounts of Mg_2Si were fabricated, and the fluidity and microstructure of each were then analyzed. For this purpose, the experiments were designed using a central composite rotatable design, and the relationship between parameters and fluidity were developed using the response surface method. In addition, optical and scanning electron microscopes were used for microstructural observation. The ANOVA shows that the mathematical models can predict the fluidity accurately. The results show that by increasing the mold temperature from 25℃ to 200℃, superheat from 50℃ to 250℃, and thickness from 3 mm to 12 mm, the fluidity of the composites decreases, where the mold thickness is more effective than other factors. In addition, the higher amounts of Mg_2Si in the range from 15 wt.% to 25 wt.% lead to the lower fluidity of the composites. For example, when the mold temperature, superheat, and thickness are respectively 100℃, 150℃, and 7 mm, the fluidity length is changed in the range of 11.9 cm to 15.3 cm. By increasing the amount of Mg_2Si, the morphology of the primary Mg_2Si becomes irregular and the size of primary Mg_2Si is increased. Moreover, the change of solidification mode from skin to pasty mode is the most noticeable microstructural effect on the fluidity. 展开更多
关键词 Al-Mg2si compositeS microstructure FLUIDITY
下载PDF
Modii cation ef ect of calcium-magnesia phosphate fertilizer on microstructure and mechanical properties of Mg_2Si/Mg-4Si composite 被引量:2
19
作者 Li-chang Fan Xiao-lin Wei +2 位作者 Zheng Lian Wen-binYu Ren-qing Huang 《China Foundry》 SCIE 2016年第3期199-204,共6页
In order to modify in-situ synthesized Mg_2Si particles in Mg_2Si/Mg-4Si composite, the modif ication effect of calcium-magnesia phosphate fertilizer on primary Mg_2Si phase in Mg_2Si/Mg-4Si composite was investigated... In order to modify in-situ synthesized Mg_2Si particles in Mg_2Si/Mg-4Si composite, the modif ication effect of calcium-magnesia phosphate fertilizer on primary Mg_2Si phase in Mg_2Si/Mg-4Si composite was investigated by means of X-ray diffraction(XRD), optical microscopy(OM), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS) analysis. The results indicate that the morphology of the primary Mg_2Si phase apparently changes from coarse dendrites to f ine dispersive polygonal particles, and the mean size is decreased from 277 μm to 17 μm. With the addition of 4.0wt.% calcium-magnesia phosphate fertilizer as a modif ier, the ultimate tensile strength and elongation of the Mg_2Si/Mg-4Si composite are increased from 78.7 MPa and 2.1% to 105.2 MPa and 2.6%, as compared to those of the base composite, which is probably attributed to the formation of the phosphorous compound and the cluster of Ca compounds that acted as the heterogeneous nucleation substrates of the primary Mg_2Si particles, resulting in a ref ined distribution of these precipitates. 展开更多
关键词 hot crack composite calcium-magnesia phosphate fertilizer modification MG2si
下载PDF
Mechanical properties of Al-15Mg_(2)Si composites prepared under different solidification cooling rates 被引量:3
20
作者 E.Safary R.Taghiabadi M.H.Ghoncheh 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第6期1249-1260,共12页
The effect of different cooling rates(2.7,5.5,17.1,and 57.5℃/s)on the solidification parameters,microstructure,and mechanical properties of Al-15Mg_(2)Si composites was studied.The results showed that a high cooling ... The effect of different cooling rates(2.7,5.5,17.1,and 57.5℃/s)on the solidification parameters,microstructure,and mechanical properties of Al-15Mg_(2)Si composites was studied.The results showed that a high cooling rate refined the Mg_(2)Si particles and changed their morphology to more compacted forms with less microcracking tendency.The average radius and fraction of primary Mg_(2)Si particles decreased from 20μm and 13.5%to about 10μm and 7.3%,respectively,as the cooling rate increased from 2.7 to 57.5℃/s.Increasing the cooling rate also improved the distribution of microconstituents and decreased the grain size and volume fraction of micropores.The mechanical properties results revealed that augmenting the cooling rate from 2.7 to about 57.5℃/s increased the hardness and quality index by 25%and245%,respectively.The high cooling rate also changed the fracture mechanism from a brittle-dominated mode to a high-energy ductile mode comprising extensive dimpled zones. 展开更多
关键词 Al-15Mg_(2)si composite solidification cooling rate thermal analysis mechanical properties
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部