Magnesium and magnesium alloy foils have great potential for application in battery anodes,electromagnetic shielding,optics and acoustics,and biology because of their excellent specific damping,internal dissipation co...Magnesium and magnesium alloy foils have great potential for application in battery anodes,electromagnetic shielding,optics and acoustics,and biology because of their excellent specific damping,internal dissipation coefficients,magnetic and electrical conductivities,as well as high theoretical specific capacity.However,magnesium alloys exhibit poor deformation ability due to their hexagonal close-packed crystal structure.Preparing magnesium and magnesium alloy foils with thicknesses of less than 0.1 mm is difficult because of surface oxidation and grain growth at high temperatures or severe anisotropy after cold rolling that leads to cracks.Numerous methods have been applied to prepare magnesium alloy foils.They include warm rolling,cold rolling,accumulative roll bonding,electric plastic rolling,and on-line heating rolling.Defects of magnesium and magnesium alloy foils during preparation,such as edge cracks and breakage,are important factors for consideration.Herein,the current status of the research on magnesium and magnesium alloy foils is summarized from the aspects of foil preparation,defect control,performance characterization,and application prospects.The advantages and disadvantages of different preparation methods and defect(edge cracks and breakage)mechanisms in the preparation of foils are identified.展开更多
In this work,La-doped Mg-Ni multiphase alloys were prepared by resistance melting furnace(RMF)and then modified by high-energy ball milling(HEBM).The hydrolysis H_(2) generation kinetics/thermodynamics of prepared all...In this work,La-doped Mg-Ni multiphase alloys were prepared by resistance melting furnace(RMF)and then modified by high-energy ball milling(HEBM).The hydrolysis H_(2) generation kinetics/thermodynamics of prepared alloys in Na Cl solutions have been investigated with the help of nonlinear and linear fitting by Avrami-Erofeev and Arrhenius equations.Combining the microstructure information before and after hydrolysis and thermodynamics fitting results,the hydrolysis H_(2) generation mechanism based on nucleation&growth has been elaborated.The final H_(2) generation capacities of 0La,5La,10La and 15 La alloys are 677,653,641 and 770 m L·g^(-1)H_(2) in 240 min at291 K,respectively.While,the final H_(2) generation capacities of HEBM 0La,5La,10La and 15 La alloys are 632,824,611 and 653 m L·g^(-1)H_(2) in 20 min at 291 K,respectively.The as-cast 15La alloy and HEMB 5La alloy present the best H_(2) production rates and final H_(2) production capacities,especially the HEBM 5La can rapidly achieve high H_(2) generation capacity(670 and 824 m L·g^(-1)H_(2) )at low temperature(291 K)within short time(5 and 20 min).The difference between the H_(2) generation capacities is mainly originated from the initial nucleation rate of Mg(OH)_(2) and the subsequent processes affected by the microstructures and phase compositions of the hydrolysis alloys.Relative low initial nucleation rate and fully growth of Mg(OH)_(2) nucleus are the premise of high H_(2) generation capacity due to the hydrolysis H_(2) generation process consisted by the nucleation,growth and contacting of Mg(OH)_(2) nucleus.To utilization H_(2) by designing solid state H_(2) generators using optimized Mg-based alloys is expected to be a feasible H_(2) generation strategy at the moment.展开更多
Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite...Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.展开更多
Ultrasonic treatment has great contributions on modifying the morphology,dimension and distribution of constituent phases during solidification,which serve as dominate factors influencing the hydrogen storage performa...Ultrasonic treatment has great contributions on modifying the morphology,dimension and distribution of constituent phases during solidification,which serve as dominate factors influencing the hydrogen storage performance of Mg-based alloys.In this research,ultrasonic treatment is utilized as a novel method to enhance the de-/hydriding properties of Mg-2Ni(at.%)alloy.Due to ultrasonic treatment,the microstructure of as-cast alloy is significantly refined and homogenized.Ascribing to the increased eutectic boundaries and shortened distance insideα-Mg for hydrogen atoms diffusion,the hydrogen uptake capacities and isothermal de-/hydriding rates improve effectively,especially at lower temperature.The peak desorption temperature reduces from 392.99°C to 345.56°C,and the dehydriding activation energy decreases from 101.93 k J mol^(-1)to 88.65 k J mol^(-1).Weakened hysteresis of plateau pressures and slightly optimized thermodynamics are determined from the pressure-composition isotherms.Owing to the refined primary Mg,a larger amount of hydrogen with the higher hydriding proportion is absorbed in the first stage when hydrides nucleate in eutectic region and grow on primary Mg periphery subsequently before MgH2colonies impinging,resulting in the enhancement of hydrogenation rates and capacities.展开更多
Microstructural evolutions and grain-boundary-character distribution during high-energy-beam welding of ultra-thin Fe Co-V foils were studied. Detailed data about the boundaries, coincidence site lattice(CSL) relati...Microstructural evolutions and grain-boundary-character distribution during high-energy-beam welding of ultra-thin Fe Co-V foils were studied. Detailed data about the boundaries, coincidence site lattice(CSL) relationships, grain sizes, and microstructural features were acquired from electron-backscatter diffraction(EBSD) maps. Moreover, the evolution of the magnetic properties during high-energy-beam welding was studied using vibrating sample magnetometry(VSM). The fraction of low-angle boundaries was observed to increase in the fusion zones of both electron- and laser-beam-welded foils. The results showed that the fractions of low-Σ CSL boundaries(particularly twin boundaries, Σ3) in the fusion zones of the welded foils are higher than those in the base metal. Because the strain rates produced during high-energy-beam welding are very high(because of the extremely high cooling rate), grain deformation by a slip mechanism is limited; therefore, deformation by grain twinning is dominant. VSM analysis showed that the magnetic properties of the welded foils, i.e., their remanence, coercive force, and energy product, changed significantly. The formation of large grains with preferred orientation parallel to the easy axis of magnetization was the main reason for the diminished magnetic properties.展开更多
The connection characteristics of rapidly solidified Cu-40%Co alloy foils were studied using a self-developed micro-type energy-storage welding machine. The results show that the microstructure of the alloy foils is c...The connection characteristics of rapidly solidified Cu-40%Co alloy foils were studied using a self-developed micro-type energy-storage welding machine. The results show that the microstructure of the alloy foils is characterized by uni form and fine equiaxed grains,whose maximum grain size is 1.8 μm. Under the o ptimum energy,the regular flat nugget is formed,low voltage and high capacitan ce are favorable for obtaining the perfect connection joints,whereas high volta ge and low capacitance are likely to result in the surface burn of the alloy foi ls. With the increase of welding energy,the spot welding joint will be transfor med from regular flat nugget to nugget-free one,and the microstructure tends t o coarsen. The welding parameters recommended are: welding voltage 80100 V,(electric) capacitance 1 8002 500 μF,and welding force 48 N.展开更多
Tin (Sn) metal foil is a promising anode for next-generation high-energy–density lithium-ion batteries (LIBs) due to its high capacity and easy processibility. However, the pristine Sn foil anode suffers nonuniform a...Tin (Sn) metal foil is a promising anode for next-generation high-energy–density lithium-ion batteries (LIBs) due to its high capacity and easy processibility. However, the pristine Sn foil anode suffers nonuniform alloying/dealloying reaction with lithium (Li) and huge volume variation, leading to electrode pulverization and inferior electrochemical performance. Herein, we proposed that reduced grain size and elaborate porosity design of Sn foil can circumvent the nonuniform alloy reaction and buffer the volume change during the lithiation/delithiation cycling. Experimentally, we designed a three-dimensional interconnected porous Sn (3DIP-Sn) foil by a facile chemical alloying/dealloying approach, which showed improved electrochemical performance. The enhanced structure stability of the as-fabricated 3DIP-Sn foil was verified by chemo-mechanical simulations and experimental investigation. As expected, the 3DIP-Sn foil anode revealed a long cycle lifespan of 4400 h at 0.5 mA cm^(−2) and 1 mAh cm^(−2) in Sn||Li half cells. A 3DIP-Sn||LiFePO_(4) full cell with LiFePO_(4) loading of 7.1 mg cm^(−2) exhibited stable cycling for 500 cycles with 80% capacity retention at 70 mA g^(−1). Pairing with high-loading commercial LiNi0.6Co0.2Mn0.2O_(2) (NCM622, 18.4 mg cm^(−2)) cathode, a 3DIP-Sn||NCM622 full cell delivered a high reversible capacity of 3.2 mAh cm^(−2). These results demonstrated the important role of regulating the uniform alloying/dealloying reaction and circumventing the localized strain/stress in improving the electrochemical performance of Sn foil anodes for advanced LIBs.展开更多
Electrodeposition of Ni-Co alloy foils on titanium substrate was performed in an acid chloride- sulphate bath. The influences of electrodeposition parameters such as current density, temperature, pH value, cobalt sulp...Electrodeposition of Ni-Co alloy foils on titanium substrate was performed in an acid chloride- sulphate bath. The influences of electrodeposition parameters such as current density, temperature, pH value, cobalt sulphate and saccharin concentration on composition and current efficiency were investigated in detail. The morphology and the microstructure of deposits were analyzed by SEM and XRD, respectively. The results indicated that the optimum parameters were current density 3-4 A/dm2, pH 2-3, temperature 40-50?C, cobalt sulphate 20 g/l and saccharin 2-3 g/l. Chemical analysis of the deposits by EDS revealed anomalous Ni-Co codeposition occured in this system. The SEM showed that hydroxide particles were not present on the surface and that fine-grain, smooth and compact Ni-Co alloy deposits were obtained. The crystallographic structures of Ni-Co alloy foils were the fcc Ni solid solution. The Ni-Co alloy foils with Co content 17.3-37.2 wt% and thickness of 20-45 μm were bright with low residual stress and super toughness.展开更多
An alternative to conventional process for the preparation of soft magnetic metal foils of Fe,Fe-Ni,Fe-Co and Fe-Ni-Co by electroforming was described.The microstructure and magnetic properties were observed.The resul...An alternative to conventional process for the preparation of soft magnetic metal foils of Fe,Fe-Ni,Fe-Co and Fe-Ni-Co by electroforming was described.The microstructure and magnetic properties were observed.The results showed that the crystal size of the iron-based alloy foil is less than 10μm,while that of nickel-based alloy foil is about 2μm.Moreover,the electroformed Fe-Ni foil has better magnetic properties than the conventional milled permalloy 1J79 foil.展开更多
基金financially supported by the National Key Research and Development Program of China(Nos.2022 YFB3709300 and 2021YFB3701000)the National Natural Science Foundation of China(Nos.52271090 and 52071036)+1 种基金the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030006)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(Nos.SKLMT-ZZKT-2022Z01 and S KLMT-ZZKT-2022M12)。
文摘Magnesium and magnesium alloy foils have great potential for application in battery anodes,electromagnetic shielding,optics and acoustics,and biology because of their excellent specific damping,internal dissipation coefficients,magnetic and electrical conductivities,as well as high theoretical specific capacity.However,magnesium alloys exhibit poor deformation ability due to their hexagonal close-packed crystal structure.Preparing magnesium and magnesium alloy foils with thicknesses of less than 0.1 mm is difficult because of surface oxidation and grain growth at high temperatures or severe anisotropy after cold rolling that leads to cracks.Numerous methods have been applied to prepare magnesium alloy foils.They include warm rolling,cold rolling,accumulative roll bonding,electric plastic rolling,and on-line heating rolling.Defects of magnesium and magnesium alloy foils during preparation,such as edge cracks and breakage,are important factors for consideration.Herein,the current status of the research on magnesium and magnesium alloy foils is summarized from the aspects of foil preparation,defect control,performance characterization,and application prospects.The advantages and disadvantages of different preparation methods and defect(edge cracks and breakage)mechanisms in the preparation of foils are identified.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51704188,51702199,61705125,51802181)the State Key Laboratory of Solidification Processing in NWPU(Grant No.SKLSP201809)+2 种基金Natural Science Foundation of Shaanxi Province(Grant No.2019JQ-099)Research Starting Foundation from Shaanxi University of Science and Technology(Grant No.2016GBJ-04)the financial support of China Scholarship Council(Grant No.201808610089)。
文摘In this work,La-doped Mg-Ni multiphase alloys were prepared by resistance melting furnace(RMF)and then modified by high-energy ball milling(HEBM).The hydrolysis H_(2) generation kinetics/thermodynamics of prepared alloys in Na Cl solutions have been investigated with the help of nonlinear and linear fitting by Avrami-Erofeev and Arrhenius equations.Combining the microstructure information before and after hydrolysis and thermodynamics fitting results,the hydrolysis H_(2) generation mechanism based on nucleation&growth has been elaborated.The final H_(2) generation capacities of 0La,5La,10La and 15 La alloys are 677,653,641 and 770 m L·g^(-1)H_(2) in 240 min at291 K,respectively.While,the final H_(2) generation capacities of HEBM 0La,5La,10La and 15 La alloys are 632,824,611 and 653 m L·g^(-1)H_(2) in 20 min at 291 K,respectively.The as-cast 15La alloy and HEMB 5La alloy present the best H_(2) production rates and final H_(2) production capacities,especially the HEBM 5La can rapidly achieve high H_(2) generation capacity(670 and 824 m L·g^(-1)H_(2) )at low temperature(291 K)within short time(5 and 20 min).The difference between the H_(2) generation capacities is mainly originated from the initial nucleation rate of Mg(OH)_(2) and the subsequent processes affected by the microstructures and phase compositions of the hydrolysis alloys.Relative low initial nucleation rate and fully growth of Mg(OH)_(2) nucleus are the premise of high H_(2) generation capacity due to the hydrolysis H_(2) generation process consisted by the nucleation,growth and contacting of Mg(OH)_(2) nucleus.To utilization H_(2) by designing solid state H_(2) generators using optimized Mg-based alloys is expected to be a feasible H_(2) generation strategy at the moment.
基金Project(51074117)supported by the National Natural Science Foundation of ChinaProject(2009CDA044)supported by the Foundation for Distinguished Young Scientists of Hubei Province,ChinaProjects(201104493,20100471161)supported by the China Postdoctoral Science Foundation
文摘Scanning electron microscopy and X-ray energy dispersive spectrum analysis show that the clusters of intermetallic AlFeSi particle are distributed on or near the aluminum foil stock surfaces heterogeneously. 3D finite element modeling shows that these clusters of hard particles induce the fracture of the nano-scale lubricant oil film at first and further lead to severe deformation in the nearby aluminum foil substrate along the rolling direction. Consequently, the optical property in this region differs from that in the surroundings, resulting in surface defects.
基金supported by National Key Research and Development Program of China(2017YFA0403804)National Natural Science Foundation of China(51825401)
文摘Ultrasonic treatment has great contributions on modifying the morphology,dimension and distribution of constituent phases during solidification,which serve as dominate factors influencing the hydrogen storage performance of Mg-based alloys.In this research,ultrasonic treatment is utilized as a novel method to enhance the de-/hydriding properties of Mg-2Ni(at.%)alloy.Due to ultrasonic treatment,the microstructure of as-cast alloy is significantly refined and homogenized.Ascribing to the increased eutectic boundaries and shortened distance insideα-Mg for hydrogen atoms diffusion,the hydrogen uptake capacities and isothermal de-/hydriding rates improve effectively,especially at lower temperature.The peak desorption temperature reduces from 392.99°C to 345.56°C,and the dehydriding activation energy decreases from 101.93 k J mol^(-1)to 88.65 k J mol^(-1).Weakened hysteresis of plateau pressures and slightly optimized thermodynamics are determined from the pressure-composition isotherms.Owing to the refined primary Mg,a larger amount of hydrogen with the higher hydriding proportion is absorbed in the first stage when hydrides nucleate in eutectic region and grow on primary Mg periphery subsequently before MgH2colonies impinging,resulting in the enhancement of hydrogenation rates and capacities.
文摘Microstructural evolutions and grain-boundary-character distribution during high-energy-beam welding of ultra-thin Fe Co-V foils were studied. Detailed data about the boundaries, coincidence site lattice(CSL) relationships, grain sizes, and microstructural features were acquired from electron-backscatter diffraction(EBSD) maps. Moreover, the evolution of the magnetic properties during high-energy-beam welding was studied using vibrating sample magnetometry(VSM). The fraction of low-angle boundaries was observed to increase in the fusion zones of both electron- and laser-beam-welded foils. The results showed that the fractions of low-Σ CSL boundaries(particularly twin boundaries, Σ3) in the fusion zones of the welded foils are higher than those in the base metal. Because the strain rates produced during high-energy-beam welding are very high(because of the extremely high cooling rate), grain deformation by a slip mechanism is limited; therefore, deformation by grain twinning is dominant. VSM analysis showed that the magnetic properties of the welded foils, i.e., their remanence, coercive force, and energy product, changed significantly. The formation of large grains with preferred orientation parallel to the easy axis of magnetization was the main reason for the diminished magnetic properties.
文摘The connection characteristics of rapidly solidified Cu-40%Co alloy foils were studied using a self-developed micro-type energy-storage welding machine. The results show that the microstructure of the alloy foils is characterized by uni form and fine equiaxed grains,whose maximum grain size is 1.8 μm. Under the o ptimum energy,the regular flat nugget is formed,low voltage and high capacitan ce are favorable for obtaining the perfect connection joints,whereas high volta ge and low capacitance are likely to result in the surface burn of the alloy foi ls. With the increase of welding energy,the spot welding joint will be transfor med from regular flat nugget to nugget-free one,and the microstructure tends t o coarsen. The welding parameters recommended are: welding voltage 80100 V,(electric) capacitance 1 8002 500 μF,and welding force 48 N.
基金This work is financially supported by the National Natural Science Foundation of China(Grant Nos.52072137,51802105).
文摘Tin (Sn) metal foil is a promising anode for next-generation high-energy–density lithium-ion batteries (LIBs) due to its high capacity and easy processibility. However, the pristine Sn foil anode suffers nonuniform alloying/dealloying reaction with lithium (Li) and huge volume variation, leading to electrode pulverization and inferior electrochemical performance. Herein, we proposed that reduced grain size and elaborate porosity design of Sn foil can circumvent the nonuniform alloy reaction and buffer the volume change during the lithiation/delithiation cycling. Experimentally, we designed a three-dimensional interconnected porous Sn (3DIP-Sn) foil by a facile chemical alloying/dealloying approach, which showed improved electrochemical performance. The enhanced structure stability of the as-fabricated 3DIP-Sn foil was verified by chemo-mechanical simulations and experimental investigation. As expected, the 3DIP-Sn foil anode revealed a long cycle lifespan of 4400 h at 0.5 mA cm^(−2) and 1 mAh cm^(−2) in Sn||Li half cells. A 3DIP-Sn||LiFePO_(4) full cell with LiFePO_(4) loading of 7.1 mg cm^(−2) exhibited stable cycling for 500 cycles with 80% capacity retention at 70 mA g^(−1). Pairing with high-loading commercial LiNi0.6Co0.2Mn0.2O_(2) (NCM622, 18.4 mg cm^(−2)) cathode, a 3DIP-Sn||NCM622 full cell delivered a high reversible capacity of 3.2 mAh cm^(−2). These results demonstrated the important role of regulating the uniform alloying/dealloying reaction and circumventing the localized strain/stress in improving the electrochemical performance of Sn foil anodes for advanced LIBs.
文摘Electrodeposition of Ni-Co alloy foils on titanium substrate was performed in an acid chloride- sulphate bath. The influences of electrodeposition parameters such as current density, temperature, pH value, cobalt sulphate and saccharin concentration on composition and current efficiency were investigated in detail. The morphology and the microstructure of deposits were analyzed by SEM and XRD, respectively. The results indicated that the optimum parameters were current density 3-4 A/dm2, pH 2-3, temperature 40-50?C, cobalt sulphate 20 g/l and saccharin 2-3 g/l. Chemical analysis of the deposits by EDS revealed anomalous Ni-Co codeposition occured in this system. The SEM showed that hydroxide particles were not present on the surface and that fine-grain, smooth and compact Ni-Co alloy deposits were obtained. The crystallographic structures of Ni-Co alloy foils were the fcc Ni solid solution. The Ni-Co alloy foils with Co content 17.3-37.2 wt% and thickness of 20-45 μm were bright with low residual stress and super toughness.
基金Sponsored by National Science Foundation for Distinguished Young Scholars of China(50225415)
文摘An alternative to conventional process for the preparation of soft magnetic metal foils of Fe,Fe-Ni,Fe-Co and Fe-Ni-Co by electroforming was described.The microstructure and magnetic properties were observed.The results showed that the crystal size of the iron-based alloy foil is less than 10μm,while that of nickel-based alloy foil is about 2μm.Moreover,the electroformed Fe-Ni foil has better magnetic properties than the conventional milled permalloy 1J79 foil.