b The discharge performance of Mg-Al-Pb-La anode was investigated by electrochemical techniques and compared withthat of Mg-Al-Pb alloy. The results indicate that the Mg-Al-Pb-La anode provides enhanced corrosion resi...b The discharge performance of Mg-Al-Pb-La anode was investigated by electrochemical techniques and compared withthat of Mg-Al-Pb alloy. The results indicate that the Mg-Al-Pb-La anode provides enhanced corrosion resistance at open circlepotential, and exhibits better discharge activity than the Mg-Al-Pb alloy. The utilization efficiency of Mg-Al-Pb-La anode ishigher than that of commercial Mg-Al-Zn (AZ) and Mg-Al-Mn (AM) alloys. A single Mg-air battery with Mg-Al-Pb-La alloy asthe anode and air as the cathode has an average discharge potential of 1.295 V and a discharge capacity of 1370 mA·h/g duringdischarge at 10 mA/cm2, which is higher than that of batteries using Mg-Li anodes. The enhancement in discharge performance ofthe Mg-Al-Pb-La anode is caused by its modified microstructure, which reduces the self-corrosion and accelerates the spalling ofoxidation products during battery discharge. Furthermore, the dissolution mechanism of Mg-Al-Pb-La anode during the dischargeprocess was analyzed.展开更多
This research aims to extract Cu from Cu-Co alloy with high efficiency and selectivity by employing binary Mg-Pb melt. The optimal conditions for the extraction of Cu were determined. The results showed under optimal ...This research aims to extract Cu from Cu-Co alloy with high efficiency and selectivity by employing binary Mg-Pb melt. The optimal conditions for the extraction of Cu were determined. The results showed under optimal conditions, 96.5% of Cu in the Cu-Co alloy could be selectively extracted after treatment at 800 ℃ for 1 h, with the extraction rates of only 0.2% Fe, 0.6% Co, and 1.4% Si. The dissolution mechanism involved the counter diffusion of Mg/Pb and Cu across the diffusion zone of the Cu-Co alloy, and Mg in the binary Mg-Pb melt played a major role in the selective dissolution of Cu, especially at the dissolution forefront. The rate-controlling step of the extraction was dominated by the interfacial reaction.展开更多
基金Project(2015JC3004)supported by the Science and Technology Plan of Hunan Province,ChinaProject(2016JJ2147)supported by the Natural Science Foundation of Hunan Province,ChinaProject(51401243)supported by the National Natural Science Foundation of China
文摘b The discharge performance of Mg-Al-Pb-La anode was investigated by electrochemical techniques and compared withthat of Mg-Al-Pb alloy. The results indicate that the Mg-Al-Pb-La anode provides enhanced corrosion resistance at open circlepotential, and exhibits better discharge activity than the Mg-Al-Pb alloy. The utilization efficiency of Mg-Al-Pb-La anode ishigher than that of commercial Mg-Al-Zn (AZ) and Mg-Al-Mn (AM) alloys. A single Mg-air battery with Mg-Al-Pb-La alloy asthe anode and air as the cathode has an average discharge potential of 1.295 V and a discharge capacity of 1370 mA·h/g duringdischarge at 10 mA/cm2, which is higher than that of batteries using Mg-Li anodes. The enhancement in discharge performance ofthe Mg-Al-Pb-La anode is caused by its modified microstructure, which reduces the self-corrosion and accelerates the spalling ofoxidation products during battery discharge. Furthermore, the dissolution mechanism of Mg-Al-Pb-La anode during the dischargeprocess was analyzed.
基金funded by the National Natural Science Foundation of China(Nos.51904350,51874371)the Hunan Natural Science Foundation,China(No.2021JJ30854).
文摘This research aims to extract Cu from Cu-Co alloy with high efficiency and selectivity by employing binary Mg-Pb melt. The optimal conditions for the extraction of Cu were determined. The results showed under optimal conditions, 96.5% of Cu in the Cu-Co alloy could be selectively extracted after treatment at 800 ℃ for 1 h, with the extraction rates of only 0.2% Fe, 0.6% Co, and 1.4% Si. The dissolution mechanism involved the counter diffusion of Mg/Pb and Cu across the diffusion zone of the Cu-Co alloy, and Mg in the binary Mg-Pb melt played a major role in the selective dissolution of Cu, especially at the dissolution forefront. The rate-controlling step of the extraction was dominated by the interfacial reaction.