通过拉伸和埃里克森实验以及扫描电镜/能谱、透射电镜和金相分析,研究Mn的质量分数对Al Mg Si Cu铝合金汽车板显微组织、力学性能和成形性的影响·研究表明,随Mn质量分数增加,Al Mg Si Cu汽车板铝合金不可溶结晶相及弥散相粒子数量...通过拉伸和埃里克森实验以及扫描电镜/能谱、透射电镜和金相分析,研究Mn的质量分数对Al Mg Si Cu铝合金汽车板显微组织、力学性能和成形性的影响·研究表明,随Mn质量分数增加,Al Mg Si Cu汽车板铝合金不可溶结晶相及弥散相粒子数量均增加,不可溶结晶相使合金组织纤维化对板材冲压成形性不利,弥散相粒子阻碍再结晶晶粒长大;提高Mn的质量分数,Al Mg Si Cu汽车板铝合金的强度增加,但延伸率和冲压成形性降低·展开更多
The electrochemical behaviors and coupling behaviors of the Mg2Si and Si phases with α(Al) were investigated, the corrosion morphologies of Al alloys containing Mg2Si and Si particles were observed, and the corrosi...The electrochemical behaviors and coupling behaviors of the Mg2Si and Si phases with α(Al) were investigated, the corrosion morphologies of Al alloys containing Mg2Si and Si particles were observed, and the corrosion mechanism associated with them in Al-Mg-Si alloys was advanced. The results show that Si particle is always cathodic to the alloy base, Mg2Si is anodic to the alloy base and corrosion occurs on its surface at the beginning. However, during its corrosion process, the preferential dissolution of Mg and the enrichment of Si make Mg2Si transform to cathode from anode, leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery at a later stage. As the mole ratio of Mg to Si in an Al-Mg-Si alloy is less than 1.73, it contains Mg2Si and Si particles simultaneously in the grain boundary area, and corrosion initiates on the Mg2Si surface and the precipitate-free zone (PFZ) at the adjacent periphery of Si particle. As corrosion time is extended, Si particle leads to severe anodic dissolution and corrosion of the PFZ at its adjacent periphery, expedites the polarity transformation between Mg2Si and the PFZ and accelerates the corrosion of PFZ at the adjacent periphery of Mg2Si particle.展开更多
The modification effect of neodymium (Nd) on Mg2Si in the hypereutectic Mg-3%Si (mass fraction) alloy was investigated by optical microcopy, scanning electron microscopy and X-ray diffraction. The results indicate...The modification effect of neodymium (Nd) on Mg2Si in the hypereutectic Mg-3%Si (mass fraction) alloy was investigated by optical microcopy, scanning electron microscopy and X-ray diffraction. The results indicate that the morphology of the primary Mg2Si transforms from coarse dendrite into fine polygon with increasing Nd content. The average size of the primary Mg2Si significantly decreases to about 10 ~ma with increasing Nd content up to 1.0%, and then becomes coarser again. The modification and refinement of the primary Mg2Si are mainly attributed to the poisoning effect. The NdMg2 phase in the primary Mg2Si transforms into NdSi and NdSi2 compounds as the Nd content exceeds 3.0%. Therefore, it is reasonable to conclude that the proper Nd (1.0%) addition can effectively modify and refine the primary Mg2Si.展开更多
The effects of minor contents of Zr and Sc on the microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloy were studied. The results show that the effects of minor Zr and Sc on the as-cast grain refinement ...The effects of minor contents of Zr and Sc on the microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloy were studied. The results show that the effects of minor Zr and Sc on the as-cast grain refinement in the ingots, the improvement in the strength of the as-extruded alloys and the restriction of high angle grain boundaries in the aged alloys can be sorted as Al3ScAl3 (Zr,Sc)Al3Zr. None of them could stop the nucleation of recrystallization, but Al3 (Zr,Sc) phase is a more effective inhibitor of dislocation movement compared to Al3 Sc in the aged alloys. Compared with the mechanical properties of the aged alloy added only 0.15% Sc, the joint addition of Zr and Sc to the alloy leads to a very slight decrease in strength with even no cost of ductility. Taking both the production cost and the little bad influence on mechanical properties into consideration, an optimal content of Zr and Sc in the Al-Mg-Si-Cu-Cr-V alloy to substitute 0.15% Sc is 0.13% Zr+0.03% Sc.展开更多
The influences of high temperature pre-straining (HT-PS) on the natural aging and bake hardening of Al?Mg?Si alloys were investigated by Vickers microhardness measurements, differential scanning calorimetry (DSC) anal...The influences of high temperature pre-straining (HT-PS) on the natural aging and bake hardening of Al?Mg?Si alloys were investigated by Vickers microhardness measurements, differential scanning calorimetry (DSC) analysis and transmission electron microscopy (TEM) characterization. The results show that pre-straining at 170 °C immediately after quenching can effectively resolve the rather high T4 temper hardness caused by the conventional room temperature (RT) pre-straining treatment, and give a better bake hardening response (BHR) after paint-bake cycle. HT-PS 7% at 170 °C for 10 min is chosen as the optimum process as it provides lower T4 temper hardness and better BHR. The simultaneous introduction of dislocations and Cluster (2) can significantly suppress the natural aging and promote the precipitation of β″ phase, and reduce the effects of deformation hardening by dynamic recovery.展开更多
Influence of thermomechanical processing on the microstructure, texture evolution and mechanical properties of A1-Mg-Si-Cu alloy sheets was studied systematically. The quite weak mechanical properties anisotropy was o...Influence of thermomechanical processing on the microstructure, texture evolution and mechanical properties of A1-Mg-Si-Cu alloy sheets was studied systematically. The quite weak mechanical properties anisotropy was obtained in the alloy sheet through thermomechanical processing optimizing. The highly elongated microstmcture is the main structure for the hot or cold-rolled alloy sheets. H {001 } (110) and E { 111 } (110) are the main texture components in the surface layer of hot-rolled sheet, while ]/-fibre is dominant in quarter and center layers. Compared with the hot-rolled sheet, the intensities offl-fibre components are higher after the first cold rolling, but H {001 }(110) component in the surface layer decreases greatly. Almost no deformation texatre can be observed after intermediate annealing. And fl-fibre becomes the main texture again after the final cold rolling. With the reduction of the thickness, the through-thickness texture gradients become much weaker. The through-thickness recrystallization texture in the solution treated sample only has cubeyD {001 }(310) component. The relationship among thermomechanical processing, microstructure, texture and mechanical orouerties was analyzed.展开更多
In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the sur...In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys.展开更多
The effects of copper on the ageing precipitation behavior of as-quenched and pre-aged AA6016 aluminum alloy were studied by differential scanning calorimetry (DSC), Vickers hardness measurement and transmission ele...The effects of copper on the ageing precipitation behavior of as-quenched and pre-aged AA6016 aluminum alloy were studied by differential scanning calorimetry (DSC), Vickers hardness measurement and transmission electronic microscopy (TEM). The results indicate that the addition of copper facilitates the growth of clusters (GP I) to the critical size during pre-ageing. Therefore, the addition of copper accelerates the transition from GP I (pre-β") to GP II (β") during final artificial ageing, and finally results in the favorable paint-bake response. However, the one with the copper level of 0.3% does not show significant baking hardening response as expected. Pre-aging can also reduce the detrimental effect due to natural aging of copper-containing alloys.展开更多
文摘通过拉伸和埃里克森实验以及扫描电镜/能谱、透射电镜和金相分析,研究Mn的质量分数对Al Mg Si Cu铝合金汽车板显微组织、力学性能和成形性的影响·研究表明,随Mn质量分数增加,Al Mg Si Cu汽车板铝合金不可溶结晶相及弥散相粒子数量均增加,不可溶结晶相使合金组织纤维化对板材冲压成形性不利,弥散相粒子阻碍再结晶晶粒长大;提高Mn的质量分数,Al Mg Si Cu汽车板铝合金的强度增加,但延伸率和冲压成形性降低·
基金Project (21073162) supported by the National Natural Science Foundation of ChinaProject (2008) supported by the Scientific and Technological Projects of Ningxia, China+1 种基金Project (08JC1421600) supported by the Science and Technology Commission of Shanghai Municipality, ChinaProject (2008AZ2018) supported by the Science and Technology Bureau of Jiaxing City, China
文摘The electrochemical behaviors and coupling behaviors of the Mg2Si and Si phases with α(Al) were investigated, the corrosion morphologies of Al alloys containing Mg2Si and Si particles were observed, and the corrosion mechanism associated with them in Al-Mg-Si alloys was advanced. The results show that Si particle is always cathodic to the alloy base, Mg2Si is anodic to the alloy base and corrosion occurs on its surface at the beginning. However, during its corrosion process, the preferential dissolution of Mg and the enrichment of Si make Mg2Si transform to cathode from anode, leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery at a later stage. As the mole ratio of Mg to Si in an Al-Mg-Si alloy is less than 1.73, it contains Mg2Si and Si particles simultaneously in the grain boundary area, and corrosion initiates on the Mg2Si surface and the precipitate-free zone (PFZ) at the adjacent periphery of Si particle. As corrosion time is extended, Si particle leads to severe anodic dissolution and corrosion of the PFZ at its adjacent periphery, expedites the polarity transformation between Mg2Si and the PFZ and accelerates the corrosion of PFZ at the adjacent periphery of Mg2Si particle.
基金Project(A0420110401)supported by the National Security Basic Research,China
文摘The modification effect of neodymium (Nd) on Mg2Si in the hypereutectic Mg-3%Si (mass fraction) alloy was investigated by optical microcopy, scanning electron microscopy and X-ray diffraction. The results indicate that the morphology of the primary Mg2Si transforms from coarse dendrite into fine polygon with increasing Nd content. The average size of the primary Mg2Si significantly decreases to about 10 ~ma with increasing Nd content up to 1.0%, and then becomes coarser again. The modification and refinement of the primary Mg2Si are mainly attributed to the poisoning effect. The NdMg2 phase in the primary Mg2Si transforms into NdSi and NdSi2 compounds as the Nd content exceeds 3.0%. Therefore, it is reasonable to conclude that the proper Nd (1.0%) addition can effectively modify and refine the primary Mg2Si.
基金Projects(N110609002,N110408005)supported by the Fundamental Research Funds for Northeastern University,China
文摘The effects of minor contents of Zr and Sc on the microstructures and mechanical properties of Al-Mg-Si-Cu-Cr-V alloy were studied. The results show that the effects of minor Zr and Sc on the as-cast grain refinement in the ingots, the improvement in the strength of the as-extruded alloys and the restriction of high angle grain boundaries in the aged alloys can be sorted as Al3ScAl3 (Zr,Sc)Al3Zr. None of them could stop the nucleation of recrystallization, but Al3 (Zr,Sc) phase is a more effective inhibitor of dislocation movement compared to Al3 Sc in the aged alloys. Compared with the mechanical properties of the aged alloy added only 0.15% Sc, the joint addition of Zr and Sc to the alloy leads to a very slight decrease in strength with even no cost of ductility. Taking both the production cost and the little bad influence on mechanical properties into consideration, an optimal content of Zr and Sc in the Al-Mg-Si-Cu-Cr-V alloy to substitute 0.15% Sc is 0.13% Zr+0.03% Sc.
基金Project(2014DFA51270)supported by the International Science and Technology Cooperation Program of ChinaProject(51421001)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China
文摘The influences of high temperature pre-straining (HT-PS) on the natural aging and bake hardening of Al?Mg?Si alloys were investigated by Vickers microhardness measurements, differential scanning calorimetry (DSC) analysis and transmission electron microscopy (TEM) characterization. The results show that pre-straining at 170 °C immediately after quenching can effectively resolve the rather high T4 temper hardness caused by the conventional room temperature (RT) pre-straining treatment, and give a better bake hardening response (BHR) after paint-bake cycle. HT-PS 7% at 170 °C for 10 min is chosen as the optimum process as it provides lower T4 temper hardness and better BHR. The simultaneous introduction of dislocations and Cluster (2) can significantly suppress the natural aging and promote the precipitation of β″ phase, and reduce the effects of deformation hardening by dynamic recovery.
基金Project(2013AA032403) supported by the National High-Tech Research and Development Program of ChinaProject(YETP0409) supported by the Beijing Higher Education Young Elite Teacher Project in 2013,ChinaProject(51301016) supported by the National Natural Science Foundation of China
文摘Influence of thermomechanical processing on the microstructure, texture evolution and mechanical properties of A1-Mg-Si-Cu alloy sheets was studied systematically. The quite weak mechanical properties anisotropy was obtained in the alloy sheet through thermomechanical processing optimizing. The highly elongated microstmcture is the main structure for the hot or cold-rolled alloy sheets. H {001 } (110) and E { 111 } (110) are the main texture components in the surface layer of hot-rolled sheet, while ]/-fibre is dominant in quarter and center layers. Compared with the hot-rolled sheet, the intensities offl-fibre components are higher after the first cold rolling, but H {001 }(110) component in the surface layer decreases greatly. Almost no deformation texatre can be observed after intermediate annealing. And fl-fibre becomes the main texture again after the final cold rolling. With the reduction of the thickness, the through-thickness texture gradients become much weaker. The through-thickness recrystallization texture in the solution treated sample only has cubeyD {001 }(310) component. The relationship among thermomechanical processing, microstructure, texture and mechanical orouerties was analyzed.
基金the National Natural Science Foundation of China(Nos.51801079,52001140)the Portugal National Funds through FCT Project(No.2021.04115).
文摘In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys.
基金Project(51105139)supported by the National Natural Science Foundation of ChinaProject(2010CB731706)supported by the National Basic Research Program of China
文摘The effects of copper on the ageing precipitation behavior of as-quenched and pre-aged AA6016 aluminum alloy were studied by differential scanning calorimetry (DSC), Vickers hardness measurement and transmission electronic microscopy (TEM). The results indicate that the addition of copper facilitates the growth of clusters (GP I) to the critical size during pre-ageing. Therefore, the addition of copper accelerates the transition from GP I (pre-β") to GP II (β") during final artificial ageing, and finally results in the favorable paint-bake response. However, the one with the copper level of 0.3% does not show significant baking hardening response as expected. Pre-aging can also reduce the detrimental effect due to natural aging of copper-containing alloys.