The microstructure and mechanical properties of Mg-xSn (x-3, 7 and 14, mass fraction, %) alloys extruded indirectly at 300 ℃ were investigated by means of optical microscopy, scanning electron microscopy and tensil...The microstructure and mechanical properties of Mg-xSn (x-3, 7 and 14, mass fraction, %) alloys extruded indirectly at 300 ℃ were investigated by means of optical microscopy, scanning electron microscopy and tensile test. The grain size of the a-Mg matrix decreases from 220, 160 and 93 μm after the homogenization treatment to 28, 3 and 16 μm in the three alloys after extrusion, respectively. The results show that the grain refinement is most remarkable in the as-extruded Mg-7Sn alloy. At the same time, the amount of the Mg2Sn particles remarkably increases in the Mg-7Sn alloy with very uniform distribution in the a-Mg matrix. In contrast, the Mg2Sn phase inherited from the solidification with a large size is mainly distributed along grain boundary in the Mg-14Sn alloy. The tensile tests at room temperature show that the ultimate tensile strength of the as-extruded Mg-7Sn alloy is the highest, i.e., 255 MPa, increased by 120% as compared with that of as-cast samples.展开更多
Based on the entropy function, a two-dimensional phase field model of binary alloys was established. Meanwhile, an explicit difference method with uniform grid was adopted to solve the phase field and solute field con...Based on the entropy function, a two-dimensional phase field model of binary alloys was established. Meanwhile, an explicit difference method with uniform grid was adopted to solve the phase field and solute field controlled equations. And the alternating direction implicit(ADI) algorithm for solving temperature field controlled equation was also employed to avoid the restriction of time step. Some characteristics of the Ni-Cu alloy were captured in the process of non-isothermal solidification, and the comparative analysis of the isothermal and the non-isothermal solidification was investigated. The simulation results indicate that the non-isothermal model is favorable to simulate the real solidification process of binary alloys, and when the thermal diffusivity decreases, the non-isothermal phase-field model is gradually consistent with the isothermal phase-field model.展开更多
The effect of extrusion ratio on microstructure and mechanical properties of as-extruded Mg-6Sn-2Zn-1Ca (TZX621)(mass fraction, %) alloy was investigated. It is found that incomplete dynamic recrystallization (DR...The effect of extrusion ratio on microstructure and mechanical properties of as-extruded Mg-6Sn-2Zn-1Ca (TZX621)(mass fraction, %) alloy was investigated. It is found that incomplete dynamic recrystallization (DRX) took place in as-extrudedTZX621 alloy. As the extrusion ratio was increased from 6 to 16, both fraction of un-DRXed grains and average size of DRXedgrains in as-extruded TZX621 alloy decreased and the basal texture was weakened. Coarse CaMgSn phase was broken into particlesand fine Mg2Sn phase precipitated from α-Mg matrix during hot extrusion. Yield strength, ultimate tensile strength and elongation ofas-extruded TZX621 alloy with extrusion ratio of 16 reached 226.9 MPa, 295.6 MPa and 18.1%, which were improved by 36.0%,17.7% and 13.5%, respectively, compared to those of as-extruded TZX621 alloy with extrusion ratio of 6.展开更多
Phase field method was used to simulate the effect of grains orientation angle θ_(11) and azimuth θ_A of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites. In the si...Phase field method was used to simulate the effect of grains orientation angle θ_(11) and azimuth θ_A of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites. In the simulation process, two single-factor influence experiments were designed for columnar crystal structures. The simulation results showed that, when θ_(11) < 45o and θ_A < 45o, as θ_(11) was enlarged, the growth direction of the secondary dendrites on the preferentially growing dendrites at the converging grain boundary(GB) presented an increasing inclination to that of preferentially growing dendrites; with increasing θ_A, the growth direction of the secondary dendrites on the preferentially growing dendrites at the converging GB exhibited greater deflection,and the secondary dendrites grew with branches; the secondary dendrites on the preferentially growing dendrites at diverging GBs grew along a direction vertical to the growth direction of the preferentially growing dendrites.When θ_A = 45o and θ_(11) = 45o, the secondary dendrites grew in a direction vertical to the growth direction of preferentially growing dendrites. The morphologies of the dendrites obtained through simulation can also be found in metallographs of practical solidification experiments. This implies that the effect of a grain's orientation angle and azimuth of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites does exist and frequently appears in the practical solidification process.展开更多
Two-dimensional cellular automaton(CA)simulations of phase transformations of binary alloys during solidification were reported.The modelling incorporates local concentration and heat changes into a nucleation or grow...Two-dimensional cellular automaton(CA)simulations of phase transformations of binary alloys during solidification were reported.The modelling incorporates local concentration and heat changes into a nucleation or growth function,which is utilized by the automaton in a probabilistic fashion.These simulations may provide an efficient method of discovering how the physical processes involved in solidification processes dynamically progress and how they interact with each other during solidification.The simulated results show that the final morphology during solidification is related with the cooling conditions.The established model can be used to evaluate the phase transformation of binary alloys during solidification.展开更多
This study investigated the influence of aging prior to extrusion(APE)on the tensile strength and ductility of as-extruded Mg-8.32Sn-1.85Zn-0.17Mn alloy.Results demonstrated that APE treatment dramatically increased t...This study investigated the influence of aging prior to extrusion(APE)on the tensile strength and ductility of as-extruded Mg-8.32Sn-1.85Zn-0.17Mn alloy.Results demonstrated that APE treatment dramatically increased the volume fraction of recrystallized grains,thereby decreasing the grain size of the as-extruded alloy.This phenomenon was primarily attributed to the particle-stimulated nucleation and pinning effect induced by large amounts of small Mg 2 Sn precipitates produced by the APE treatment and dynamic precipitation.The tensile yield strength increased from 242.4 MPa to 256.5 MPa after APE treatment.The improved tensile strength can be attributed to the enhanced grain boundary strengthening and precipitation strengthening.The ductility of the as-extruded alloy also markedly increased from 7.1%to 13.5%after the APE treatment.The improved ductility of APE alloy was attributed to the texture randomization,the activity of pyramidal<c+a>slip and the suppressed formation of{10-11}contraction twins and coarse Mg 2 Sn phases.展开更多
As-cast Mg-Sn alloys(3,6,and 9 wt%Sn)were solution treated at 653,703 and 753 K(380,430 and 480℃)for 1,4,8,12 and 24 h to determine the variation of secondary phase with respect to Sn content,temperature and time.Mg-...As-cast Mg-Sn alloys(3,6,and 9 wt%Sn)were solution treated at 653,703 and 753 K(380,430 and 480℃)for 1,4,8,12 and 24 h to determine the variation of secondary phase with respect to Sn content,temperature and time.Mg-3 wt%Sn exhibits Mg2Sn dissolution at all solution treatment temperatures whereas Mg-6 and 9 wt%Sn alloy displays Mg2Sn reprecipitation and dissolution depending on the heat treatment temperature.In addition,a combined mathematical model that predicts the secondary phase dissolution and solute redistribution as a function of temperature and time is presented in this work.This model is a significant improvement compared to the previous studies where the dissolution and homogenization processes are considered independently.The effect of grain size and solute mobility upon the dissolution and homogenization kinetics is discussed as well.展开更多
Taking Al-2%mole-Cu binary alloy as an example, the influence of grain orientation on competitive growth of dendrites under different competitive modes was investigated by using the three-dimensional(3-D) phasefield m...Taking Al-2%mole-Cu binary alloy as an example, the influence of grain orientation on competitive growth of dendrites under different competitive modes was investigated by using the three-dimensional(3-D) phasefield method. The result of phase-field simulation was verified by applying cold spray and directional remelting. In the simulation process, two competitive modes were designed: in Scheme 1, the monolayer columnar grains in multilayer columnar crystals had different orientations; while in Scheme 2, they had the same orientation. The simulation result showed that in Scheme 1, the growth of the dendrites, whose orientation had a certain included angle with the direction of temperature gradient, was restrained by the growth of other dendrites whose direction was parallel to the direction of temperature gradient. Moreover, the larger the included angle between the grain orientation and temperature gradient, the earlier the cessation of dendrite growth. The secondary dendrites of dendrites whose grain orientation was parallel to the temperature gradient flourished with increasing included angles between the grain orientation and temperature gradient. In Scheme 2, the greater the included angle between grain orientation and temperature gradient, the easier the dendrites whose orientation showed a certain included angle with temperature gradient inserted between those grew parallel to the temperature gradient, and the better the growth condition thereafter. Some growing dendrites after intercalation were deflected to the temperature gradient, and the greater the included angle, the lower the deflection. The morphologies of the competitive growth dendrites obtained through simulation can also be found in metallographs of practical solidification experiments. This implies that the two modes of competitive growth of dendrites characterized in the simulation do exist and frequently appear in practical solidification processes.展开更多
The effects of different amounts of added Al, ranging from 1 % to 9 %, on the microstructure and properties of Mg-Al binary alloys were investigated. The results showed that when the amount of added Al is less than 5%...The effects of different amounts of added Al, ranging from 1 % to 9 %, on the microstructure and properties of Mg-Al binary alloys were investigated. The results showed that when the amount of added Al is less than 5%, the grain size of the Mg-Al binary alloys decreases dramatically from 3 097 μm to 151 μm with increasing addition of Al. Further addition of Al up to 9% makes the grain size decrease slowly to 111 μm. The α-Mg dendrite arms are also refined. Increasing the amount of added Al decreases the hot cracking susceptibility of the Mg-Al binary alloys remarkably, and enhances the micro-hardness of the α-Mg matrix.展开更多
The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 a...The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 and λ 2, which are represented as a linear function of temperature, T . The molar excess Gibbs free energy, G m E, can be written in the form G m E= x A x B[( λ 11 + λ 12 T )+( λ 21 + λ 22 T ) x B ] The calculation is carried out numerically for three immiscible binary alloy systems, Al Pb, Cu Tl and In V. The agreement between the calculated and experimentally determined values of activity coefficient is excellent.展开更多
This paper simulates the dendrite growth process during non-isothermal solidification in the Al-Cu binary alloy by using the phase-field model. The heat transfer equation is solved simultaneously. The thermodynamic an...This paper simulates the dendrite growth process during non-isothermal solidification in the Al-Cu binary alloy by using the phase-field model. The heat transfer equation is solved simultaneously. The thermodynamic and kinetic parameters are directly obtained from existing database by using the Calculation of Phase Diagram (CALPHAD) method. The effects of the latent heat and undercooling on the dendrite growth, solute and temperature profile during the solidification of binary alloy are investigated. The results indicate that the dendrite growing morphologies could be simulated realistically by linking the phase-field method to CALPHAD. The secondary arms of solidification dendritic are better developed with the increase of undercooling. Correspondingly, the tip speed and the solute segregation in solid-liquid interface increase, but the tip radius decreases.展开更多
Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in AI-2-mole-%-Si binary ...Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in AI-2-mole-%-Si binary alloy under isothermal solidification was simulated using phase field model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidification. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited.展开更多
The improved form of calculation formula for the activities of the components in binary liquids and solid alloys has been derived based on the free volume theory considering excess entropy and Miedema's model for ...The improved form of calculation formula for the activities of the components in binary liquids and solid alloys has been derived based on the free volume theory considering excess entropy and Miedema's model for calculating the formation heat of binary alloys. A calculation method of excess thermodynamic functions for binary alloys, the formulas of integral molar excess properties and partial molar excess properties for solid ordered or disordered binary alloys have been developed. The calculated results are in good agreement with the experimental values.展开更多
By considering collision-limited growth mode and short-range diffusion-limited growth mode simultaneously,an extended kinetic model for solid−liquid interface with varied kinetic prefactor was developed for binary all...By considering collision-limited growth mode and short-range diffusion-limited growth mode simultaneously,an extended kinetic model for solid−liquid interface with varied kinetic prefactor was developed for binary alloys.Four potential correlations arising from effective kinetics coupling the two growth modes were proposed and studied by application to planar interface migration and dendritic solidification,where the linear correlation between the effective thermodynamic driving force and the effective kinetic energy barrier seems physically realistic.A better agreement between the results of free dendritic growth model and the available experiment data for Ni−0.7at.%B alloy was obtained based on correlation between the thermodynamics and kinetics.As compared to previous models assuming constant kinetic prefactor,a common phenomenon occurring at relatively low undercoolings,i.e.the interface migration slowdown,can be ascribed to both the thermodynamic and the kinetic factors.By considering universality of the correlation between the thermodynamics and kinetics,it is concluded that the correlation should be considered to model the interface kinetics in alloy solidification.展开更多
The phase diagrams of ternary systems involving two metal components and one oxidant are considered first, the limitations to their use is discussed in relation to the high temperature oxidation of binary alloys. Kine...The phase diagrams of ternary systems involving two metal components and one oxidant are considered first, the limitations to their use is discussed in relation to the high temperature oxidation of binary alloys. Kinetic diagrams, which are useful to predict the conditions for the stability of the two mutually insoluble oxides as the external scale, are then calculated on the basis of thermodynamic and kinetic data concerning both the alloys and the oxides, assuming the validity of the parabolic rate law. A combination of the two types of diagrams provides a more detail information about the oxidation behavior of binary alloys. The calculation of the diffusion paths, which relate the oxidant pressure to the composition of the system in terms of the alloy components both in the alloy and in the scale during an initial stage of the reaction in the presence of the parabolic rate law, is finally developed.展开更多
A new method of revising activity values has been derived based on the so called correction factor function for binary alloys with a large difference between two components. The correction factor is a function of phys...A new method of revising activity values has been derived based on the so called correction factor function for binary alloys with a large difference between two components. The correction factor is a function of physical properties formed by the difference of two components. Its absolute value increases with the enhancement of the difference in the character of components. It can be either positive or negative and the rules for selecting the sign of correction factor have been analyzed. Results are in good agreement with the experimental values.展开更多
Ti43Al and Ti47Al alloys with different contents of zirconium were prepared by non-consumable vacuum arc melting furnace.The microstructure and mechanical properties were investigated.The results showed that Zr had no...Ti43Al and Ti47Al alloys with different contents of zirconium were prepared by non-consumable vacuum arc melting furnace.The microstructure and mechanical properties were investigated.The results showed that Zr had no obvious effect on microstructure morphology of Ti43Al,while that of Ti47Al was modified from dendrites into equiaxed grains.The addition of Zr could refine the grains.Zr promoted the formation ofγphase significantly and the solubility values of Zr inγphase were 12.0%and 5.0%(molar fraction)in Ti43Al and Ti47Al,respectively.Zr-richγphase mainly formed throughβ→γin Ti43Al-xZr(molar fraction,%)andβ→α→γin Ti47Al-xZr(molar fraction,%).Fine-grain strengthening and solution strengthening were beneficial to improving the compressive strength while severe micro-segregation was detrimental to compressive properties.Large solubility of Zr was bad for ductility of alloys as well.The maximum compressive strengths of Ti43Al-xZr and Ti47Al-xZr were 1684.82 MPa(x=5.0%)and 2158.03 MPa(x=0.5%),respectively.The compressive strain fluctuated slightly in Ti43Al-xZr and reached the maximum value of 35.24%(x=0.5%)in Ti47Al-xZr.Both alloys showed brittle fracture.展开更多
The normal vector of migration direction in the solid-liquid interface of dendrites was used to describe the phase-field governing equation. By using the three angles formed by the normal vector for the migration dire...The normal vector of migration direction in the solid-liquid interface of dendrites was used to describe the phase-field governing equation. By using the three angles formed by the normal vector for the migration direction of the dendritic growth interface and the coordinate axes of the simulation region, the authors expressed the interfacial anisotropy equation, and built a phase-field model for the competitive growth of multiple grains. Taking a Al-2%mole-Cu binary alloy as an example, the competitive growth of multiple grains during isothermal solidification was simulated by applying parallel computing techniques. In addition, the phase field simulation results were verified by the experimental method. The simulation results show that the competitive growth of equiaxed dendrite is divided into two types: the first occurs during the process of competitive growth, the tips of primary dendrite on different grains taking part in the competition stop growing in their optimal growth direction; the second also occurs during competitive growth, the tips of primary dendrite which participate in the competition on different grains never stop growing in their optimal growth direction. The dendritic morphologies of the first competition growth type are divided into two types. Primary dendrites of grains taking part in the competition stop growing in their optimal growth direction and the competition plane enlarges when neither one wins the competition. However, when one wins the competition, the primary dendrites of grains with superiority go through the blocking grains and continue to grow in their optimal growth direction. The primary dendrites of inferior grains stop growing in their optimal growth direction and then instead grow in those areas without obstacles. The dendritic morphology of the second competition-growth type is shown to be the deformation of primary dendrites, which are mainly represented as the deflection and bending observed from different views. Compared with the metallographic picture, the simulation results can show the morphology of the competitive growth in all directions, so this simulation method can better characterize the competitive growth process.展开更多
The formation and growth of Kirkendall voids in a binary alloy system during deformation process were investigated byphase field crystal model.The simulation results show that Kirkendall voids nucleate preferentially ...The formation and growth of Kirkendall voids in a binary alloy system during deformation process were investigated byphase field crystal model.The simulation results show that Kirkendall voids nucleate preferentially at the interface,and the averagesize of the voids increases with both the time and strain rate.There is an obvious coalescence of the voids at a large strain rate whenthe deformation is applied along the interface under both constant and cyclic strain rate conditions.For the cyclic strain rate appliedalong the interface,the growth exponent of Kirkendall voids increases with increasing the strain rate when the strain rate is largerthan1.0×10-6,while it increases initially and then decreases when the strain rate is smaller than9.0×10?7.The growth exponent ofKirkendall voids increases initially and then decreases gradually with increasing the length of cyclic period under a square-waveform constant strain rate.展开更多
基金Project(2008S089)supported by the Key Laboratory Program of Liaoning Province,ChinaProject(2007010303025)supported by the Shenyang Talents Supporting,ChinaProject(50731002)supported by the National Natural Science Foundation of China
文摘The microstructure and mechanical properties of Mg-xSn (x-3, 7 and 14, mass fraction, %) alloys extruded indirectly at 300 ℃ were investigated by means of optical microscopy, scanning electron microscopy and tensile test. The grain size of the a-Mg matrix decreases from 220, 160 and 93 μm after the homogenization treatment to 28, 3 and 16 μm in the three alloys after extrusion, respectively. The results show that the grain refinement is most remarkable in the as-extruded Mg-7Sn alloy. At the same time, the amount of the Mg2Sn particles remarkably increases in the Mg-7Sn alloy with very uniform distribution in the a-Mg matrix. In contrast, the Mg2Sn phase inherited from the solidification with a large size is mainly distributed along grain boundary in the Mg-14Sn alloy. The tensile tests at room temperature show that the ultimate tensile strength of the as-extruded Mg-7Sn alloy is the highest, i.e., 255 MPa, increased by 120% as compared with that of as-cast samples.
基金Projects(51161011,11364024)supported by the National Natural Science Foundation of China
文摘Based on the entropy function, a two-dimensional phase field model of binary alloys was established. Meanwhile, an explicit difference method with uniform grid was adopted to solve the phase field and solute field controlled equations. And the alternating direction implicit(ADI) algorithm for solving temperature field controlled equation was also employed to avoid the restriction of time step. Some characteristics of the Ni-Cu alloy were captured in the process of non-isothermal solidification, and the comparative analysis of the isothermal and the non-isothermal solidification was investigated. The simulation results indicate that the non-isothermal model is favorable to simulate the real solidification process of binary alloys, and when the thermal diffusivity decreases, the non-isothermal phase-field model is gradually consistent with the isothermal phase-field model.
基金Project(51601076)supported by the National Natural Science Foundation of ChinaProjects(16KJB430013,17KJA430005)supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province,China
文摘The effect of extrusion ratio on microstructure and mechanical properties of as-extruded Mg-6Sn-2Zn-1Ca (TZX621)(mass fraction, %) alloy was investigated. It is found that incomplete dynamic recrystallization (DRX) took place in as-extrudedTZX621 alloy. As the extrusion ratio was increased from 6 to 16, both fraction of un-DRXed grains and average size of DRXedgrains in as-extruded TZX621 alloy decreased and the basal texture was weakened. Coarse CaMgSn phase was broken into particlesand fine Mg2Sn phase precipitated from α-Mg matrix during hot extrusion. Yield strength, ultimate tensile strength and elongation ofas-extruded TZX621 alloy with extrusion ratio of 16 reached 226.9 MPa, 295.6 MPa and 18.1%, which were improved by 36.0%,17.7% and 13.5%, respectively, compared to those of as-extruded TZX621 alloy with extrusion ratio of 6.
基金supported by the National Natural Science Foundation of China(Grant Nos.:11504149,11364024,and 51661020)
文摘Phase field method was used to simulate the effect of grains orientation angle θ_(11) and azimuth θ_A of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites. In the simulation process, two single-factor influence experiments were designed for columnar crystal structures. The simulation results showed that, when θ_(11) < 45o and θ_A < 45o, as θ_(11) was enlarged, the growth direction of the secondary dendrites on the preferentially growing dendrites at the converging grain boundary(GB) presented an increasing inclination to that of preferentially growing dendrites; with increasing θ_A, the growth direction of the secondary dendrites on the preferentially growing dendrites at the converging GB exhibited greater deflection,and the secondary dendrites grew with branches; the secondary dendrites on the preferentially growing dendrites at diverging GBs grew along a direction vertical to the growth direction of the preferentially growing dendrites.When θ_A = 45o and θ_(11) = 45o, the secondary dendrites grew in a direction vertical to the growth direction of preferentially growing dendrites. The morphologies of the dendrites obtained through simulation can also be found in metallographs of practical solidification experiments. This implies that the effect of a grain's orientation angle and azimuth of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites does exist and frequently appears in the practical solidification process.
基金Project(50572013) supported by the National Natural Science Foundation of ChinaProject(G2000067104) supported by the National Basic Research Program of China
文摘Two-dimensional cellular automaton(CA)simulations of phase transformations of binary alloys during solidification were reported.The modelling incorporates local concentration and heat changes into a nucleation or growth function,which is utilized by the automaton in a probabilistic fashion.These simulations may provide an efficient method of discovering how the physical processes involved in solidification processes dynamically progress and how they interact with each other during solidification.The simulated results show that the final morphology during solidification is related with the cooling conditions.The established model can be used to evaluate the phase transformation of binary alloys during solidification.
基金The authors are grateful for the financial supports from the Sichuan Science and Technology Program(2019YJ0478)the Research Foundation for the introduction of talent of Sichuan University of Science and Engineering,China(Grant Nos.2017RCL18 and 2017RCL35)the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province,China(Grant Nos.2017CL05,2017CL06 and 2018CL06)。
文摘This study investigated the influence of aging prior to extrusion(APE)on the tensile strength and ductility of as-extruded Mg-8.32Sn-1.85Zn-0.17Mn alloy.Results demonstrated that APE treatment dramatically increased the volume fraction of recrystallized grains,thereby decreasing the grain size of the as-extruded alloy.This phenomenon was primarily attributed to the particle-stimulated nucleation and pinning effect induced by large amounts of small Mg 2 Sn precipitates produced by the APE treatment and dynamic precipitation.The tensile yield strength increased from 242.4 MPa to 256.5 MPa after APE treatment.The improved tensile strength can be attributed to the enhanced grain boundary strengthening and precipitation strengthening.The ductility of the as-extruded alloy also markedly increased from 7.1%to 13.5%after the APE treatment.The improved ductility of APE alloy was attributed to the texture randomization,the activity of pyramidal<c+a>slip and the suppressed formation of{10-11}contraction twins and coarse Mg 2 Sn phases.
文摘As-cast Mg-Sn alloys(3,6,and 9 wt%Sn)were solution treated at 653,703 and 753 K(380,430 and 480℃)for 1,4,8,12 and 24 h to determine the variation of secondary phase with respect to Sn content,temperature and time.Mg-3 wt%Sn exhibits Mg2Sn dissolution at all solution treatment temperatures whereas Mg-6 and 9 wt%Sn alloy displays Mg2Sn reprecipitation and dissolution depending on the heat treatment temperature.In addition,a combined mathematical model that predicts the secondary phase dissolution and solute redistribution as a function of temperature and time is presented in this work.This model is a significant improvement compared to the previous studies where the dissolution and homogenization processes are considered independently.The effect of grain size and solute mobility upon the dissolution and homogenization kinetics is discussed as well.
基金funded by the National Natural Science Foundation of China(Grant Nos.:11504149,11364024,51661020)
文摘Taking Al-2%mole-Cu binary alloy as an example, the influence of grain orientation on competitive growth of dendrites under different competitive modes was investigated by using the three-dimensional(3-D) phasefield method. The result of phase-field simulation was verified by applying cold spray and directional remelting. In the simulation process, two competitive modes were designed: in Scheme 1, the monolayer columnar grains in multilayer columnar crystals had different orientations; while in Scheme 2, they had the same orientation. The simulation result showed that in Scheme 1, the growth of the dendrites, whose orientation had a certain included angle with the direction of temperature gradient, was restrained by the growth of other dendrites whose direction was parallel to the direction of temperature gradient. Moreover, the larger the included angle between the grain orientation and temperature gradient, the earlier the cessation of dendrite growth. The secondary dendrites of dendrites whose grain orientation was parallel to the temperature gradient flourished with increasing included angles between the grain orientation and temperature gradient. In Scheme 2, the greater the included angle between grain orientation and temperature gradient, the easier the dendrites whose orientation showed a certain included angle with temperature gradient inserted between those grew parallel to the temperature gradient, and the better the growth condition thereafter. Some growing dendrites after intercalation were deflected to the temperature gradient, and the greater the included angle, the lower the deflection. The morphologies of the competitive growth dendrites obtained through simulation can also be found in metallographs of practical solidification experiments. This implies that the two modes of competitive growth of dendrites characterized in the simulation do exist and frequently appear in practical solidification processes.
文摘The effects of different amounts of added Al, ranging from 1 % to 9 %, on the microstructure and properties of Mg-Al binary alloys were investigated. The results showed that when the amount of added Al is less than 5%, the grain size of the Mg-Al binary alloys decreases dramatically from 3 097 μm to 151 μm with increasing addition of Al. Further addition of Al up to 9% makes the grain size decrease slowly to 111 μm. The α-Mg dendrite arms are also refined. Increasing the amount of added Al decreases the hot cracking susceptibility of the Mg-Al binary alloys remarkably, and enhances the micro-hardness of the α-Mg matrix.
文摘The modified sub regular solution model was used for a calculation of the activity coefficient of immiscible binary alloy systems. The parameters needed for the calculation are the interaction parameters, λ 1 and λ 2, which are represented as a linear function of temperature, T . The molar excess Gibbs free energy, G m E, can be written in the form G m E= x A x B[( λ 11 + λ 12 T )+( λ 21 + λ 22 T ) x B ] The calculation is carried out numerically for three immiscible binary alloy systems, Al Pb, Cu Tl and In V. The agreement between the calculated and experimentally determined values of activity coefficient is excellent.
基金Project supported by Research Center of Material Science and Engineering of Jiangxi Province,China(Grant No ZX200301017)
文摘This paper simulates the dendrite growth process during non-isothermal solidification in the Al-Cu binary alloy by using the phase-field model. The heat transfer equation is solved simultaneously. The thermodynamic and kinetic parameters are directly obtained from existing database by using the Calculation of Phase Diagram (CALPHAD) method. The effects of the latent heat and undercooling on the dendrite growth, solute and temperature profile during the solidification of binary alloy are investigated. The results indicate that the dendrite growing morphologies could be simulated realistically by linking the phase-field method to CALPHAD. The secondary arms of solidification dendritic are better developed with the increase of undercooling. Correspondingly, the tip speed and the solute segregation in solid-liquid interface increase, but the tip radius decreases.
基金supported by the Doctor Foundational Research Project in Shenyang Ligong University(Serial Number:0010).
文摘Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growth in metallic systems. In this study, the growth process of multiple dendrites in AI-2-mole-%-Si binary alloy under isothermal solidification was simulated using phase field model. The simulation results showed the impingement of arbitrarily oriented crystals and the competitive growth among the grains during solidification. With the increase of growing time, the grains begin to coalesce and impinge the adjacent grains. When the dendrites start to impinge, the dendrite growth is obviously inhibited.
基金Financial support of this research by the National Natural Sci-ence Foundation of China under Grants 50074013 and 59774027Huo Ying-Dong Education Foundation is gratfully scknowl-edged.Thanks are furthermore due to Chinese-Austrian Scientific Technicai Exchange Prograrn(Project V.A.15) as well as to Prof.T.Tanaka in Osaka University in Japan and Dr.S.J.Zhong foroffering help and discuasions.
文摘The improved form of calculation formula for the activities of the components in binary liquids and solid alloys has been derived based on the free volume theory considering excess entropy and Miedema's model for calculating the formation heat of binary alloys. A calculation method of excess thermodynamic functions for binary alloys, the formulas of integral molar excess properties and partial molar excess properties for solid ordered or disordered binary alloys have been developed. The calculated results are in good agreement with the experimental values.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51671075 and 51790481)the National Key R&D Program of China,(2017YFB0703001 and 2017YFB0305100)+3 种基金China Postdoctoral Science Foundation(2016M590970)the Fund of the State Key Laboratory of Solidification Processing in NWPU,China(SKLSP201606)the Fundamental Research Foundation for Universities of Heilongjiang Province,China(LGYC2018JC004)the Heilongjiang Postdoctoral Fund for Scientific Research Initiation,China(LBH-Q16118).
文摘By considering collision-limited growth mode and short-range diffusion-limited growth mode simultaneously,an extended kinetic model for solid−liquid interface with varied kinetic prefactor was developed for binary alloys.Four potential correlations arising from effective kinetics coupling the two growth modes were proposed and studied by application to planar interface migration and dendritic solidification,where the linear correlation between the effective thermodynamic driving force and the effective kinetic energy barrier seems physically realistic.A better agreement between the results of free dendritic growth model and the available experiment data for Ni−0.7at.%B alloy was obtained based on correlation between the thermodynamics and kinetics.As compared to previous models assuming constant kinetic prefactor,a common phenomenon occurring at relatively low undercoolings,i.e.the interface migration slowdown,can be ascribed to both the thermodynamic and the kinetic factors.By considering universality of the correlation between the thermodynamics and kinetics,it is concluded that the correlation should be considered to model the interface kinetics in alloy solidification.
基金Financial supports by the NSFC(China)under the research projects(No.50071058 and No.59725101)by the CAS(China)-CNR(Italy)under an international collaboration agreement are gratefully acknowledged.
文摘The phase diagrams of ternary systems involving two metal components and one oxidant are considered first, the limitations to their use is discussed in relation to the high temperature oxidation of binary alloys. Kinetic diagrams, which are useful to predict the conditions for the stability of the two mutually insoluble oxides as the external scale, are then calculated on the basis of thermodynamic and kinetic data concerning both the alloys and the oxides, assuming the validity of the parabolic rate law. A combination of the two types of diagrams provides a more detail information about the oxidation behavior of binary alloys. The calculation of the diffusion paths, which relate the oxidant pressure to the composition of the system in terms of the alloy components both in the alloy and in the scale during an initial stage of the reaction in the presence of the parabolic rate law, is finally developed.
基金Financial support of this research by the National Natural Sci-ence Foundation of China under Grants 50074013 and 59774027and Huo Ying-Dong Education Foundation is gratefully acknowl-edged. Thanks are furthermore due to Chinese-Austrian Scientific Techni
文摘A new method of revising activity values has been derived based on the so called correction factor function for binary alloys with a large difference between two components. The correction factor is a function of physical properties formed by the difference of two components. Its absolute value increases with the enhancement of the difference in the character of components. It can be either positive or negative and the rules for selecting the sign of correction factor have been analyzed. Results are in good agreement with the experimental values.
基金Project(51741404)supported by the National Natural Science Foundation of ChinaProject(2017YFA0403802)supported by National Key Research and Development Program of China
文摘Ti43Al and Ti47Al alloys with different contents of zirconium were prepared by non-consumable vacuum arc melting furnace.The microstructure and mechanical properties were investigated.The results showed that Zr had no obvious effect on microstructure morphology of Ti43Al,while that of Ti47Al was modified from dendrites into equiaxed grains.The addition of Zr could refine the grains.Zr promoted the formation ofγphase significantly and the solubility values of Zr inγphase were 12.0%and 5.0%(molar fraction)in Ti43Al and Ti47Al,respectively.Zr-richγphase mainly formed throughβ→γin Ti43Al-xZr(molar fraction,%)andβ→α→γin Ti47Al-xZr(molar fraction,%).Fine-grain strengthening and solution strengthening were beneficial to improving the compressive strength while severe micro-segregation was detrimental to compressive properties.Large solubility of Zr was bad for ductility of alloys as well.The maximum compressive strengths of Ti43Al-xZr and Ti47Al-xZr were 1684.82 MPa(x=5.0%)and 2158.03 MPa(x=0.5%),respectively.The compressive strain fluctuated slightly in Ti43Al-xZr and reached the maximum value of 35.24%(x=0.5%)in Ti47Al-xZr.Both alloys showed brittle fracture.
基金funded by the National Natural Science Foundation of China(Grant Numbers:11504149,11364024,51661020)
文摘The normal vector of migration direction in the solid-liquid interface of dendrites was used to describe the phase-field governing equation. By using the three angles formed by the normal vector for the migration direction of the dendritic growth interface and the coordinate axes of the simulation region, the authors expressed the interfacial anisotropy equation, and built a phase-field model for the competitive growth of multiple grains. Taking a Al-2%mole-Cu binary alloy as an example, the competitive growth of multiple grains during isothermal solidification was simulated by applying parallel computing techniques. In addition, the phase field simulation results were verified by the experimental method. The simulation results show that the competitive growth of equiaxed dendrite is divided into two types: the first occurs during the process of competitive growth, the tips of primary dendrite on different grains taking part in the competition stop growing in their optimal growth direction; the second also occurs during competitive growth, the tips of primary dendrite which participate in the competition on different grains never stop growing in their optimal growth direction. The dendritic morphologies of the first competition growth type are divided into two types. Primary dendrites of grains taking part in the competition stop growing in their optimal growth direction and the competition plane enlarges when neither one wins the competition. However, when one wins the competition, the primary dendrites of grains with superiority go through the blocking grains and continue to grow in their optimal growth direction. The primary dendrites of inferior grains stop growing in their optimal growth direction and then instead grow in those areas without obstacles. The dendritic morphology of the second competition-growth type is shown to be the deformation of primary dendrites, which are mainly represented as the deflection and bending observed from different views. Compared with the metallographic picture, the simulation results can show the morphology of the competitive growth in all directions, so this simulation method can better characterize the competitive growth process.
基金Projects(51275178,51405162,51205135) supported by the National Natural Science Foundation of ChinaProjects(20110172110003,20130172120055) supported by the Doctoral Program of Higher Education of China
文摘The formation and growth of Kirkendall voids in a binary alloy system during deformation process were investigated byphase field crystal model.The simulation results show that Kirkendall voids nucleate preferentially at the interface,and the averagesize of the voids increases with both the time and strain rate.There is an obvious coalescence of the voids at a large strain rate whenthe deformation is applied along the interface under both constant and cyclic strain rate conditions.For the cyclic strain rate appliedalong the interface,the growth exponent of Kirkendall voids increases with increasing the strain rate when the strain rate is largerthan1.0×10-6,while it increases initially and then decreases when the strain rate is smaller than9.0×10?7.The growth exponent ofKirkendall voids increases initially and then decreases gradually with increasing the length of cyclic period under a square-waveform constant strain rate.