期刊文献+
共找到12,704篇文章
< 1 2 250 >
每页显示 20 50 100
Influence of layer thickness on formation quality,microstructure,mechanical properties,and corrosion resistance of WE43 magnesium alloy fabricated by laser powder bed fusion 被引量:1
1
作者 Bangzhao Yin Jinge Liu +7 位作者 Bo Peng Mengran Zhou Bingchuan Liu Xiaolin Ma Caimei Wang Peng Wen Yun Tian Yufeng Zheng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1367-1385,共19页
Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not... Laser powder bed fusion(L-PBF)of Mg alloys has provided tremendous opportunities for customized production of aeronautical and medical parts.Layer thickness(LT)is of great significance to the L-PBF process but has not been studied for Mg alloys.In this study,WE43 Mg alloy bulk cubes,porous scaffolds,and thin walls with layer thicknesses of 10,20,30,and 40μm were fabricated.The required laser energy input increased with increasing layer thickness and was different for the bulk cubes and porous scaffolds.Porosity tended to occur at the connection joints in porous scaffolds for LT40 and could be eliminated by reducing the laser energy input.For thin wall parts,a large overhang angle or a small wall thickness resulted in porosity when a large layer thicknesses was used,and the porosity disappeared by reducing the layer thickness or laser energy input.A deeper keyhole penetration was found in all occasions with porosity,explaining the influence of layer thickness,geometrical structure,and laser energy input on the porosity.All the samples achieved a high fusion quality with a relative density of over 99.5%using the optimized laser energy input.The increased layer thickness resulted to more precipitation phases,finer grain sizes and decreased grain texture.With the similar high fusion quality,the tensile strength and elongation of bulk samples were significantly improved from 257 MPa and 1.41%with the 10μm layer to 287 MPa and 15.12%with the 40μm layer,in accordance with the microstructural change.The effect of layer thickness on the compressive properties of porous scaffolds was limited.However,the corrosion rate of bulk samples accelerated with increasing the layer thickness,mainly attributed to the increased number of precipitation phases. 展开更多
关键词 magnesium alloy WE43 Laser powder bed fusion Layer thickness Process optimization
下载PDF
Recent progress in the research on magnesium and magnesium alloy foils:A short review
2
作者 Qiuyan Shen Yongxing Ba +3 位作者 Peng Zhang Jiangfeng Song Bin Jiang Fusheng Pan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期842-854,共13页
Magnesium and magnesium alloy foils have great potential for application in battery anodes,electromagnetic shielding,optics and acoustics,and biology because of their excellent specific damping,internal dissipation co... Magnesium and magnesium alloy foils have great potential for application in battery anodes,electromagnetic shielding,optics and acoustics,and biology because of their excellent specific damping,internal dissipation coefficients,magnetic and electrical conductivities,as well as high theoretical specific capacity.However,magnesium alloys exhibit poor deformation ability due to their hexagonal close-packed crystal structure.Preparing magnesium and magnesium alloy foils with thicknesses of less than 0.1 mm is difficult because of surface oxidation and grain growth at high temperatures or severe anisotropy after cold rolling that leads to cracks.Numerous methods have been applied to prepare magnesium alloy foils.They include warm rolling,cold rolling,accumulative roll bonding,electric plastic rolling,and on-line heating rolling.Defects of magnesium and magnesium alloy foils during preparation,such as edge cracks and breakage,are important factors for consideration.Herein,the current status of the research on magnesium and magnesium alloy foils is summarized from the aspects of foil preparation,defect control,performance characterization,and application prospects.The advantages and disadvantages of different preparation methods and defect(edge cracks and breakage)mechanisms in the preparation of foils are identified. 展开更多
关键词 magnesium alloy foil ROLLING DEFECT performance application
下载PDF
Comprehensive insights into recent innovations:Magnesium-inclusive high-entropy alloys
3
作者 Andrii Babenko Ehsan Ghasali +6 位作者 Saleem Raza Kahila Baghchesaraee Ye Cheng Asif Hayat Peng Liu Shuaifei Zhao Yasin Orooji 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1311-1345,共35页
This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs we... This review focuses on thermodynamic and physical parameters,synthesis methods,and reported phases of Magnesium(Mg)containing high-entropy alloys(HEAs).Statistical data of publications concerning Mg-containing HEAs were collected and analyzed.Data on the chemical elements included in Mg-containing HEAs,their theoretical end experimental densities,thermodynamic parameters,physical parameters,fabricated techniques and reported phases were also collected and discussed.On the basis of this information,a new classification for HEAs was proposed.It is also shown that the existing thermodynamic parameters cannot accurately predict the formation of a single phase solid solution for Mg-containing HEAs.The physical parameters of Mg-containing HEAs are within a wide range,and most of the synthesized Mg-containing HEAs have a complex multiphase structure. 展开更多
关键词 magnesium High-entropy alloys CLASSIFICATION Thermodynamic parameters Physical parameters
下载PDF
Degradation and biocompatibility of one-step electrodeposited magnesium thioctic acid/magnesium hydroxide hybrid coatings on ZE21B alloys for cardiovascular stents
4
作者 Zhao-Qi Zhang Bing-Zhi Li +5 位作者 Pei-Duo Tong Shao-Kang Guan Li Wang Zheng-Hui Qiu Cun-Guo Lin Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期120-138,共19页
Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing comp... Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing composite coatings are usually complicated and time-consuming.Herein,a novel composite coating,composed of bioactive magnesium thioctic acid(MTA)layer formed by deposition and corrosion-resistant magnesium hydroxide(Mg(OH)_(2))layer grown in situ,is simply fabricated on ZE21B alloys via one-step electrodeposition.Scanning electron microscopy(SEM)shows that the electrodeposited coating has a compact and uniform structure.And the high adhesion of the MTA/Mg(OH)_(2)hybrid coating is also confirmed by the micro-scratch test.Electrochemical test,scanning kelvin probe(SKP),and hydrogen evolution measurement indicate that the hybrid coating effectively reduces the degradation rate of Mg substrates.Haemocompatibility experiment and cell culture trial detect that the composite coating is of fine biocompatibility.Finally,the preparation mechanism of MTA/Mg(OH)_(2)hybrid coatings is discussed and proposed.This coating shows a great potential application for cardiovascular stents. 展开更多
关键词 magnesium alloy Corrosion resistance Hybrid coating ENDOTHELIALIZATION BIOCOMPATIBILITY
下载PDF
Effects of orientation on the fatigue crack growth behaviors of the ZK60 magnesium alloy in air and PBS
5
作者 Jiaqi Hu Zheng Liu +1 位作者 Zuoliang Ning Hong Gao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期281-294,共14页
Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tes... Strong anisotropic corrosion and mechanical properties caused by specimen orientations greatly limit the applications of wrought magnesium alloys.To investigate the influences of specimen orientation,the corrosion tests and(corrosion)fatigue crack growth tests were conducted.The rolled and transverse surfaces of the materials show distinct corrosion rate differences in the stable corrosion stage,but the truth is the opposite for the initial stage of corrosion.In air,specimen orientations have a significant influence on the plastic deformation mechanisms near the crack tip,which results in different fatigue fracture surfaces and cracking paths.Compared with R-T specimens,N-T specimens show a slower fatigue crack growth(FCG)rate in air,which can be attributed to crack closure effects and deformation twinning near the crack tip.The corrosion environment will not significantly change the main plastic deformation mechanisms for the same type of specimen.However,the FCG rate in phosphate buffer saline(PBS)is one order of magnitude higher than that in air,which is caused by the combined effects of hydrogen-induced cracking and anodic dissolution.Owing to the similar corrosion rates at crack tips,the specimens with different orientations display close FCG rates in PBS. 展开更多
关键词 magnesium alloy ORIENTATION CORROSION Fatigue crack growth
下载PDF
The influence of yttrium and manganese additions on the degradation and biocompatibility of magnesium-zinc-based alloys:In vitro and in vivo studies
6
作者 Lei Shi Yang Yan +3 位作者 Chun-sheng Shao Kun Yu Bo Zhang Liang-jian Chen 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期608-624,共17页
The repair and regeneration of bone defects are highly challenging orthopedic problems.Recently,Mg-based implants have gained popularity due to their unique biodegradation and elastic modulus similar to that of human ... The repair and regeneration of bone defects are highly challenging orthopedic problems.Recently,Mg-based implants have gained popularity due to their unique biodegradation and elastic modulus similar to that of human bone.The aim of our study is to develop a magnesium alloy with a controllable degradation that can closely match bone tissue to help injuries heal in vivo and avoid cytotoxicity caused by a sudden increase in ion concentration.In this study,we prepared and modified Mg-3Zn,Mg-3Zn-1Y,and Mg-2Zn-1Mn by hot extrusion,and used Mg-2.5Y-2.5Nd was as a control.We then investigated the effect of additions of Y and Mn on alloys'properties.Our results show that Mn and Y can improve not only compression strength but also corrosion resistance.The alloy Mg-2Zn-1Mn demonstrated good cytocompatibility in vitro,and for this reason we selected it for implantation in vivo.The degraded Mg-2Zn-1Mn implanted a bone defect area did not cause obvious rejection and inflammatory reaction,and the degradation products left no signs of damage to the heart,liver,kidney,or brain.Furthermore,we find that Mg-2Zn-1Mn can promote an osteoinductive response in vivo and the formation of bone regeneration. 展开更多
关键词 magnesium alloy BIODEGRADATION BIOCOMPATIBILITY Bone regeneration Bone defect repair
下载PDF
On dry machining of AZ31B magnesium alloy using textured cutting tool inserts
7
作者 Shailendra Pawanr Kapil Gupta 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1608-1618,共11页
Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of... Magnesium alloys have many advantages as lightweight materials for engineering applications,especially in the fields of automotive and aerospace.They undergo extensive cutting or machining while making products out of them.Dry cutting,a sustainable machining method,causes more friction and adhesion at the tool-chip interface.One of the promising solutions to this problem is cutting tool surface texturing,which can reduce tool wear and friction in dry cutting and improve machining performance.This paper aims to investigate the impact of dimple textures(made on the flank face of cutting inserts)on tool wear and chip morphology in the dry machining of AZ31B magnesium alloy.The results show that the cutting speed was the most significant factor affecting tool flank wear,followed by feed rate and cutting depth.The tool wear mechanism was examined using scanning electron microscope(SEM)images and energy dispersive X-ray spectroscopy(EDS)analysis reports,which showed that at low cutting speed,the main wear mechanism was abrasion,while at high speed,it was adhesion.The chips are discontinuous at low cutting speeds,while continuous at high cutting speeds.The dimple textured flank face cutting tools facilitate the dry machining of AZ31B magnesium alloy and contribute to ecological benefits. 展开更多
关键词 magnesium alloy Dry machining Textured tools Flank wear SUSTAINABILITY
下载PDF
Influence of laser parameters on the microstructures and surface properties in laser surface modification of biomedical magnesium alloys
8
作者 Chee Ying Tan Cuie Wen Hua Qian Ang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期72-97,共26页
Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machi... Biodegradable implants from magnesium(Mg)alloys have emerged in the biomedical field especially in the orthopedic and cardiovascular stent applications owing to their low density,high specific strength,excellent machinability,good biocompatibility,and biodegradability.The primary shortcoming of Mg-based implants is their low corrosion resistance in the physiological environment,which results in premature mechanical integrity loss before adequate healing and the production of excessive hydrogen gas,which is harmful to the body tissues and negatively affects the biocompatibility of the implant.Laser surface modification has recently received attention because it can improve the surface properties such as surface chemistry,roughness,topography,corrosion resistance,wear resistance,hydrophilicity,and thus cell response to the surface of the material.The composition and microstructures including textures and phases of laser-treated surfaces depend largely on the laser processing parameters(input laser power,laser scan velocity,frequency,pulse duration,pressure,gas circulation,working time,spot size,beam focal position,and laser track overlap)and the thermophysical properties of the substrate(solubility,melting point,and boiling point).This review investigates the impacts of various laser surface modification techniques including laser surface melting,laser surface alloying,laser cladding,laser surface texturing,and laser shock peening,and highlights their significance in improving the surface properties of biodegradable Mg alloys for implant applications.Additionally,we explore how different laser process parameters affect its composition,microstructure,and surface properties in each laser surface modification technique. 展开更多
关键词 BIOCOMPATIBILITY BIODEGRADABILITY Corrosion Implant applications Laser surface modification magnesium alloys
下载PDF
Experimental observations on the nonproportional multiaxial ratchetting of cast AZ91 magnesium alloy at room temperature
9
作者 Binghui Hu Yu Lei +3 位作者 Hang Li Ziyi Wang Chao Yu Guozheng Kang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1115-1125,共11页
The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (R... The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (RT).The evolutionary characteristics and path dependence of multiaxial ratchetting were discussed.Results illustrate that the cast AZ91 Mg alloy exhibits considerable nonproportional additional softening during cyclic loading with multiple nonproportional multiaxial loading paths;multiaxial ratchetting presents strong path dependence,and axial ratchetting strains are larger under nonproportional loading paths than under uniaxial and proportional45°linear loading paths;multiaxial ratchetting becomes increasingly pronounced as the applied stress amplitude and axial mean stress increase.Moreover,stress-strain curves show a convex and symmetrical shape in axial/torsional directions.Multiaxial ratchetting exhibits quasi-shakedown after certain loading cycles.The abundant experimental data obtained in this work can be used to develop a cyclic plasticity model of cast Mg alloys. 展开更多
关键词 cast magnesium alloy RATCHETTING multiaxial loading loading path stress level
下载PDF
Influence of ammonium sulfate on the corrosion behavior of AZ31 magnesium alloy in chloride environment
10
作者 Feng Ge Zhongyu Cui +3 位作者 Yue Liu Li Lei Xin Wang Hongzhi Cui 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1082-1101,共20页
Electrochemical corrosion of AZ31 magnesium alloy in the NH_(4)^(+)-SO_(4)2−-Cl−environment is studied.Effect of NH_(4)^(+)overshadows that of Cl−as the(NH_(4))_(2)SO_(4) concentration is 0.005 M or higher,yielding an... Electrochemical corrosion of AZ31 magnesium alloy in the NH_(4)^(+)-SO_(4)2−-Cl−environment is studied.Effect of NH_(4)^(+)overshadows that of Cl−as the(NH_(4))_(2)SO_(4) concentration is 0.005 M or higher,yielding an evolution from localized corrosion to uniform corrosion.Acceleration effect of NH_(4)^(+)can be attributed to that(i)NH_(4)^(+)dissolves the inner MgO and hinders the precipitation of Mg(OH)_(2) and(ii)the buffering ability of NH_(4)^(+)provides H+,enhances the hydrogen evolution,and expedites the corrosion process.The latter is demonstrated as the dominant factor with the results in unbuffered and buffered environments.The severe corrosion and hydrogen process in NH_(4)^(+)-containing solution results in a high Hads coverage and yields an inductive loop within the low frequency.Meanwhile,SO_(4)^(2−)is helpful in generating cracked but partially protective corrosion products,while Cl−could broaden the corrosion area beneath the corrosion product. 展开更多
关键词 magnesium alloy Ammonium corrosion Electrochemical kinetic parameter Anodic dissolution.
下载PDF
Biomedical rare-earth magnesium alloy:Current status and future prospects
11
作者 Mingli Yang Cheng Chen +5 位作者 Dongsheng Wang Yinjin Shao Wenhao Zhou Cijun Shuai Youwen Yang Xinghai Ning 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1260-1282,共23页
Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,wit... Biomedical magnesium(Mg)alloys have garnered significant attention because of their unique biodegradability,favorable biocompatibility,and suitable mechanical properties.The incorporation of rare earth(RE)elements,with their distinct physical and chemical properties,has greatly contributed to enhancing the mechanical performance,degradation behavior,and biological performance of biomedical Mg alloys.Currently,a series of RE-Mg alloys are being designed and investigated for orthopedic implants and cardiovascular stents,achieving substantial and encouraging research progress.In this work,a comprehensive summary of the state-of-the-art in biomedical RE-Mg alloys is provided.The physiological effects and design standards of RE elements in biomedical Mg alloys are discussed.Particularly,the degradation behavior and mechanical properties,including their underlying action are studied in-depth.Furthermore,the preparation techniques and current application status of RE-Mg alloys are reviewed.Finally,we address the ongoing challenges and propose future prospects to guide the development of high-performance biomedical Mg-RE alloys. 展开更多
关键词 magnesium alloy Rare earth elements Biodegradation behavior Mechanical performance Biological properties
下载PDF
Effect of low concentration electrolytes on the formation and corrosion resistance of PEO coatings on AM50 magnesium alloy
12
作者 Peng Xie Carsten Blawert +4 位作者 Maria Serdechnova Natalia Konchakova Tatsiana Shulha Ting Wu Mikhail L.Zheludkevich 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1386-1405,共20页
In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were system... In this paper,the formation process,morphology,and electrochemical performance of PEO coatings on AM50 magnesium alloy prepared in low concentration phosphate,aluminate,and phosphate-aluminate electrolytes were systematically studied.The results show that the coatings prepared from the phosphate electrolytes have a higher thickness and better corrosion resistance properties compared to the other electrolytes.The coatings prepared from low concentration phosphate-aluminate mixed electrolytes have slightly thinner thickness,a similar coating structure and an order of magnitude lower value of electrochemical impedance compared with phosphate electrolyte coatings.The Coatings prepared from low concentration aluminate electrolytes have the lowest thickness and the worst corrosion resistance properties which gets close to corrosion behavior of the bare AM50 under the same test conditions.Considering application,coatings prepared from single low concentration phosphate electrolytes and low concentration phosphate-aluminate electrolytes have greater potential than single low concentration aluminate coatings.However,reducing the electrolyte concentrations of coating forming ions too much has negative influence on the coating growth rate. 展开更多
关键词 Plasma electrolytic oxidation Low concentration electrolytes Corrosion resistance AM50 magnesium alloy
下载PDF
Experimental and simulation research on hollow AZ31 magnesium alloy three-channel joint by hot extrusion forming with sand mandrel
13
作者 Shi Shengnan Wang Hongyu +4 位作者 Teng Fei Jiang Lei Sun Juncai Sun Jie Zhang Shunhu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期98-109,共12页
Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the ho... Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner. 展开更多
关键词 AZ31 magnesium alloy Three-channel joint SAND Experiments and the finite element Die angle
下载PDF
Improving corrosion resistance of additively manufactured WE43 magnesium alloy by high temperature oxidation for biodegradable applications
14
作者 Jinge Liu Bangzhao Yin +7 位作者 Fei Song Bingchuan Liu Bo Peng Peng Wen Yun Tian Yufeng Zheng Xiaolin Ma Caimei Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期940-953,共14页
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples... Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications. 展开更多
关键词 Laser powder bed fusion Biodegradable magnesium alloy High temperature oxidation Corrosion resistance WE43.
下载PDF
Interplay of laser power and pore characteristics in selective laser melting of ZK60 magnesium alloys:A study based on in-situ monitoring and image analysis
15
作者 Weijie Xie Hau-Chung Man Chi-Wai Chan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1346-1366,共21页
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis... This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys. 展开更多
关键词 Selective laser melting(SLM) magnesium(Mg)alloys Biodegradable implants POROSITY In-situ monitoring
下载PDF
Analyze the Performance of Electroactive Anticorrosion Coating of Medical Magnesium Alloy Using Deep Learning
16
作者 Yashan Feng Yafang Tian +3 位作者 Yongxin Yang Yufang Zhang Haiwei Guo Jing’an Li 《Computers, Materials & Continua》 SCIE EI 2024年第4期263-278,共16页
Electroactive anticorrosion coatings are specialized surface treatments that prevent or minimize corrosion. Thestudy employs strategic thermodynamic equilibriumcalculations to pioneer a novel factor in corrosion prote... Electroactive anticorrosion coatings are specialized surface treatments that prevent or minimize corrosion. Thestudy employs strategic thermodynamic equilibriumcalculations to pioneer a novel factor in corrosion protection.A first-time proposal, the total acidity (TA) potential of the hydrogen (pH) concept significantly shapes medicalmagnesium alloys. These coatings are meticulously designed for robust corrosion resistance, blending theoreticalinsights and practical applications to enhance our grasp of corrosion prevention mechanisms and establisha systematic approach to coating design. The groundbreaking significance of this study lies in its innovativeintegration of the TA/pH concept,which encompasses the TA/pH ratio of the chemical environment. This approachsurpasses convention by acknowledging the intricate interplay between the acidity and pH levels within thecoating formulation, thereby optimizing metal-phosphate-based conversion coatings and transforming corrosionmitigation strategies. To authenticate the TA/pH concept, the study comprehensively compares its findings withexisting research, rigorously validating the theoretical framework and reinforcing the correlates among TA/pHvalues and observed corrosion resistance in the coatings. The influence of mutations that occur naturally inthe detergent solution on persistent phosphorus changes is shown by empirical confirmation, which improvescorrosion resistance. This realization advances the field ofmaterials and the field’s knowledge of coated generation,particularly anticorrosion converter layers. 展开更多
关键词 Medical magnesium alloys hydrogen gas ANTICORROSION total acidity potential of the hydrogen(pH)
下载PDF
Mechanical Evaluation of AZ80 Magnesium Alloy in Cast Wrought Form
17
作者 Peilin Ying Anita Hu +1 位作者 Wutian Shen Henry Hu 《Journal of Materials Science and Chemical Engineering》 2024年第4期119-125,共7页
Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore co... Wrought magnesium alloy AZ80 with a thick section of 20 mm was prepared by squeeze casting (SC) and permanent steel mold casting (PSMC). The porosity measurements of the SC and PSMC depicted that SC AZ80 had a pore content of 0.52%, which was 77% lower than 2.21% of PSMC AZ80 counterpart. The YS, UTS, e<sub>f</sub>, E and strengthening rate of cast AZ80 were determined by mechanical pulling. The engineering stress versus strain bended lines showed that SC AZ80 had a YS of 84.7 MPa, a UTS of 168.2 MPa, 5.1% in e<sub>f</sub>, and 25.1 GPa in modulus. But, the YS, UTS and e<sub>f</sub> of the PSMC AZ80 specimen were only 71.6 MPa, 109.0 MPa, 1.9% and 21.9 GPa. The findings of the mechanical pulling evidently depicted that the YS, UTS, e<sub>f</sub> and E of SC AZ80 were 18%, 54%, 174% and 15% higher than PSMC counterpart. The computed resilience and toughness suggested that the SC AZ80 exhibited greater resistance to tensile loads during elastic deformation and possessed higher capacity to absorb energy during plastic deformation compared to the PSMC AZ80. At the beginning of permanent change, the strengthening rate of SC AZ80 was 10,341 MPa, which was 9% greater than 9489 MPa of PSMC AZ80. The high mechanical characteristics of SC AZ80 should be primarily attributed to its low porosity level. . 展开更多
关键词 Squeeze Casting Wrought magnesium alloy AZ80 POROSITY Tensile Prop-erties
下载PDF
Research advances of magnesium and magnesium alloys worldwide in 2022 被引量:4
18
作者 Yan Yang Xiaoming Xiong +3 位作者 Jing Chen Xiaodong Peng Daolun Chen Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2611-2654,共44页
More than 4600 papers in the field of Mg and Mg alloys were published and indexed in the Web of Science(WoS)Core Collection database in 2022.The bibliometric analyses indicate that the microstructure,mechanical proper... More than 4600 papers in the field of Mg and Mg alloys were published and indexed in the Web of Science(WoS)Core Collection database in 2022.The bibliometric analyses indicate that the microstructure,mechanical properties,and corrosion of Mg alloys are still the main research focus.Bio-Mg materials,Mg ion batteries and hydrogen storage Mg materials have attracted much attention.Notable contributions to the research and development of magnesium alloys were made by Chongqing University(>200 papers),Chinese Academy of Sciences,Shanghai Jiao Tong University,and Northeastern University(>100 papers)in China,Helmholtz Zentrum Hereon in Germany,Ohio State University in the USA,the University of Queensland in Australia,Kumanto University in Japan,and Seoul National University in Korea,University of Tehran in Iran,and National University of Singapore in Singapore,etc.This review is aimed to summarize the progress in the development of structural and functional Mg and Mg alloys in 2022.Based on the issues and challenges identified here,some future research directions are suggested. 展开更多
关键词 magnesium alloys Cast magnesium alloys Wrought magnesium alloys Bio-magnesium alloys Mg-based energy storage materials Processing technologies Corrosion and protection
下载PDF
Development and application of magnesium alloy parts for automotive OEMs:A review 被引量:10
19
作者 Bo Liu Jian Yang +3 位作者 Xiaoyu Zhang Qin Yang Jinsheng Zhang Xiaoqing Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第1期15-47,共33页
China is currently vigorously implementing the“energy conservation and emission reduction”and“dual carbon”strategies.As the most resource-advantaged light metal material in China,Magnesium(Mg)alloy is progressivel... China is currently vigorously implementing the“energy conservation and emission reduction”and“dual carbon”strategies.As the most resource-advantaged light metal material in China,Magnesium(Mg)alloy is progressively expanding its application in automobile,rail transportation,aerospace,medical,and electronic products.Chongqing University,Shanghai Jiaotong University,and Australian National University have conducted extensive research on the preparation,properties,and processes of Mg alloys.In the past 20 years,the proportion of Mg alloy in the automotive industry has gradually expanded,whereas currently the design and development of Mg alloy parts for automobiles has rarely been reported.Thus,the application models and typical parts cases of Mg alloy are summarized mainly from the four systems of the whole vehicle(body system,chassis system,powertrain system,interior,and exterior system).Subsequently,two actual original equipment manufacturers(OEM)cases are used to introduce the development logic of reliable die-cast Mg alloy,including forward design,formability analysis,process design analysis,structural redesign,manufacturing,and testing,aiming to share the methods,processes,and focus of attention of automotive OEMs for developing Mg alloy parts to enhance the confidence and motivation of applying Mg alloy in automotive field.Eventually,the multiple challenges faced by Mg alloy materials are sorted out and how to face these challenges are discussed.National policies and regulations,environmental protection and energy saving,and consumer demand will continue to promote the application of Mg. 展开更多
关键词 magnesium alloy Original equipment manufacturer Automotive application Development process
下载PDF
Corrosion resistance and anti-soiling performance of micro-arc oxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys 被引量:4
20
作者 Dong Wang Chen Ma +4 位作者 Jinyu Liu Weidong Li Wei Shang Ning Peng Yuqing Wen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1128-1139,共12页
Magnesium(Mg)alloys,the lightest metal construction material used in industry,play a vital role in future development.However,the poor corrosion resistance of Mg alloys in corrosion environments largely limits their p... Magnesium(Mg)alloys,the lightest metal construction material used in industry,play a vital role in future development.However,the poor corrosion resistance of Mg alloys in corrosion environments largely limits their potential wide applications.Therefore,a micro-arc oxidation/graphene oxide/stearic acid(MAO/GO/SA)superhydrophobic composite coating with superior corrosion resistance was fabricated on a Mg alloy AZ91D through micro-arc oxidation(MAO)technology,electrodeposition technique,and self-assembly technology.The composition and microstructure of the coating were characterized by scanning electron microscopy,X-ray diffraction,energy dispersive spectroscopy,and Raman spectroscopy.The effective protection of the MAO/GO/SA composite coating applied to a substrate was evaluated using potentiodynamic polarization,electrochemical impedance spectroscopy tests,and salt spray tests.The results showed that the MAO/GO/SA composite coating with a petal spherical structure had the best superhydrophobicity,and it attained a contact angle of 159.53°±2°.The MAO/GO/SA composite coating exhibited high resistance to corrosion,according to electrochemical and salt spray tests. 展开更多
关键词 magnesium alloy composite coating SUPERHYDROPHOBIC corrosion resistance anti-soiling performance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部