期刊文献+
共找到1,058篇文章
< 1 2 53 >
每页显示 20 50 100
Progress and prospects of Mg-based amorphous alloys in azo dye wastewater treatment
1
作者 Yanan Chen Fengchun Chen +5 位作者 Liang Li Chen Su Bo Song Hongju Zhang Shengfeng Guo Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期873-889,共17页
Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problem... Mg-based amorphous alloys exhibit efficient catalytic performance and excellent biocompatibility with a promising application probability,specifically in the field of azo dye wastewater degradation.However,the problems like difficulty in preparation and poor cycling stability need to be solved.At present,Mg-based amorphous alloys applied in wastewater degradation are available in powder and ribbon.The amorphous alloy powder fabricated by ball milling has a high specific surface area,and its reactivity is thousands of times better than that of gas atomized alloy powder.But the development is limited due to the high energy consumption,difficult and costly process of powder recycling.The single roller melt-spinning method is a new manufacturing process of amorphous alloy ribbon.Compared to amorphous powder,the specific surface area of amorphous ribbon is relatively lower,therefore,it is necessary to carry out surface modification to enhance it.Dealloying is a way that can form a pore structure on the surface of the amorphous alloys,increasing the specific surface area and providing more reactive sites,which all contribute to the catalytic performance.Exploring the optimal conditions for Mg-based amorphous alloys in wastewater degradation by adjusting amorphous alloy composition,choosing suitable method to preparation and surface modification,reducing cost,expanding the pH range will advance the steps to put Mg-based amorphous alloys in industrial environments into practice. 展开更多
关键词 mg-based amorphous alloys Azo dyes DEalloyING Surface modification Wastewater degradation.
下载PDF
Tuning interface mechanism of FeCo alloy embedded N,S-codoped carbon substrate for rechargeable Zn-air battery 被引量:1
2
作者 Hui Chang Lulu Zhao +4 位作者 Shan Zhao Zong-Lin Liu Peng-Fei Wang Ying Xie Ting-Feng Yi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期400-410,I0010,共12页
The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple ... The interface mechanism between catalyst and carbon substrate has been the focus of research.In this paper,the FeCo alloy embedded N,S co-doped carbon substrate bifunctional catalyst(FeCo/S-NC)is obtained by a simple one-step pyrolysis strategy.The experimental results and density functional theory(DFT)calculation show that the formation of FeCo alloy is conducive to promoting electron transfer,and the introduction of S atom can enhance the interaction between FeCo alloy and carbon substrate,thus inhibiting the migration and agglomeration of particles on the surface of carbon material.The FeCo/SNC catalysts show outstanding performance for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).FeCo/S-NC shows a high half-wave potential(E_(1/2)=0.8823 V)for ORR and a low overpotential at 10 mA cm^(-2)(E_(j=10)=299 mV)for OER.In addition,compared with Pt/C+RuO_(2) assembled Zn-air battery(ZAB),the FeCo/S-NC assembled ZAB exhibits a larger power density(198.8 mW cm^(-2)),a higher specific capacity(786.1 mA h g_(zn)~(-1)),and ultra-stable cycle performance.These results confirm that the optimized composition and the interfacial interaction between catalyst and carbon substrate synergistically enhance the electrochemical performance. 展开更多
关键词 FeCo alloy N S co-doped carbon DFT calculation Zn-air batteries Interfacial interaction
下载PDF
Effect of Heat-Treatment Process on Properties of Rare Earth Mg-Based System Hydrogen Storage Alloys with AB_3-Type 被引量:7
3
作者 王英 卢其云 +2 位作者 彭能 肖方明 唐仁衡 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期340-342,共3页
The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau v... The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work. 展开更多
关键词 heat-treatment rare earth mg-based system hydrogen storage alloy Ni/MH battery
下载PDF
A comprehensive review on biocompatible Mg-based alloys as temporary orthopaedic implants:Current status,challenges,and future prospects 被引量:10
4
作者 Darothi Bairagi Sumantra Mandal 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第3期674-722,共49页
Mg and its alloys are drawing huge attention since the last two decades as a viable option for temporary implants applications.A commendable progress has already been made in the development of these alloys.The biodeg... Mg and its alloys are drawing huge attention since the last two decades as a viable option for temporary implants applications.A commendable progress has already been made in the development of these alloys.The biodegradable nature of Mg,appreciable biocompatibility of elemental Mg,and its close resemblance to natural bone in terms of density and elastic modulus make them highly preferable option amongst other available alternatives in this field.This review article presents an overview covering the recent advancements made in the field of Mg-based biodegradable implants for orthopaedic implant applications.The paper focuses on alloy development and fabrication techniques,the state of the art of important Mg-based alloy systems in terms of their mechanical properties,in-vitro and in-vivo degradation behaviour and cytotoxicity.Further,the paper reviews the current progress achieved in the clinical transition of Mg-based alloys for orthopaedic fixtures.The review also includes the degradation mechanisms of the alloys in physiological environment and highlights the mismatch existing between the rate of bone healing and alloy degradation due to rapid corrosion of the alloys in such environment,which has still restricted their widespread application.Finally,the surface coating techniques available for the alloys as an effective way to reduce the degradation rate are reviewed,followed by a discussion on the future research prospects. 展开更多
关键词 mg-based alloys BIOMATERIALS Temporary implants BIOCOMPATIBILITY Degradation behaviour orthopaedic fixtures.
下载PDF
Hydrogen storage behavior of Mg-based alloy catalyzed by carbon-cobalt composites 被引量:4
5
作者 Hui Yong Xin Wei +4 位作者 Jifan Hu Zeming Yuan Shihai Guo Dongliang Zhao Yanghuan Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1977-1988,共12页
The composites comprised of Co nanoparticle and C nanosheet were prepared though a high-temperature carbonization reaction.The catalysis of Co@C composites on the hydrogen storage behavior of Mg_(90)Ce_(5)Y_(5)alloy w... The composites comprised of Co nanoparticle and C nanosheet were prepared though a high-temperature carbonization reaction.The catalysis of Co@C composites on the hydrogen storage behavior of Mg_(90)Ce_(5)Y_(5)alloy was investigated in detail by XRD,SEM,TEM,PCI,and DSC method.Because of the synergistic catalytic function of C and Co in C@Co nanocomposites,the Mg_(90)Ce_(5)Y_(5)alloy with 10 wt.%C@Co shows the excellent hydrogen absorption and desorption performances.Time for releasing hydrogen reduces from 150 min to 11 min with the addition of the C@Co composites at the temperature of 300℃.Meanwhile,the dehydrogenation activation energy also declines from 130.3 to 81.9 kJ mol^(-1)H_(2)after the addition of the C@Co composites.This positive effect attributes to the C layer with the high defect density and the Co nanoparticles,which reduces the energy barriers for the nucleation of Mg/MgH_(2)phase and the recombination of hydrogen molecule.Besides,the C@Co composites also improve the activation property of the Mg_(90)Ce_(5)Y_(5)alloy which was folly activated in the first cycle.Moreover,the temperature for initial dehydrogenation and the endothermic peak of the alloy hydride were also decreased.Although the addition of the C@Co composites increases the plateau pressures and decreases the value of the decomposition enthalpy,these differences are so small that the improvement on thermodynamics can hardly be seen. 展开更多
关键词 Hydrogen storage mg-based alloy KINETICS THERMODYNAMICS Synergistic effect NANOCOMPOSITES
下载PDF
Study on Nanocrystalline Rare Earth Mg-Based System Hydrogen Storage Alloys with AB_3-Type 被引量:7
6
作者 唐仁衡 卢其云 +2 位作者 肖方明 彭能 王英 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期343-346,共4页
A sort of rare earth Mg-based system hydrogen storage alloys with AB3-type was prepared by double-roller rapid quenching method. The alloys were nanocrystalline multi-phase structures composed of LaNi3 phase and LaNi5... A sort of rare earth Mg-based system hydrogen storage alloys with AB3-type was prepared by double-roller rapid quenching method. The alloys were nanocrystalline multi-phase structures composed of LaNi3 phase and LaNi5 phase by X-ray diffraction and scanning electron microscopy analyses, and the suitable absorption/desorption plateau was revealed by the measurement of P-C-I curve. Electrochemical studies indicate that the alloys exhibit good electrochemical properties such as high capacity and stable cycle life, and the discharge capacity is 369 mAh·g-1 at 0.2 C (72 mA·g-1). after 460 cycles, the capacity decay was only 19.4% at 2 C (720 mA·g-1). 展开更多
关键词 NANOCRYSTALLINE double-roller rapid quenching rare earth mg-based compounds hydrogen storage alloy
下载PDF
Hydrogen absorption/desorption cycling performance of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines 被引量:4
7
作者 Fenghai Guo Tiebang Zhang +1 位作者 Limin Shi Lin Song 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1180-1192,共13页
Aiming to elucidate the hydrogen absorption/desorption cycling properties of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines,the hydrogen storage cycle stability,hydriding/dehydriding c... Aiming to elucidate the hydrogen absorption/desorption cycling properties of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines,the hydrogen storage cycle stability,hydriding/dehydriding cycling kinetics and thermodynamic stability of the experimental alloys have been investigated in detail.The results show that the Mg-Ni-La alloys exhibit improved hydrogen storage cycling properties and can remain storage hydrogen above 5.5 wt%after 200 cycles.With the increase of cycling numbers,the dehydrogenation rates of the experimental samples increase firstly and then gradually decrease,and eventually maintain relative stable state.Microstructure observation reveals that powders sintering and hydrogen decrepitation both exist during hydrogen absorption/desorption cycles due to repeated volume expansion and contraction.Meanwhile,the in-situ formed LaH_(x)(x=2,3)and Mg_(2)Ni nanocrystallines stabilize the microstructures of the particles and hinder the powders sintering.After 200 cycles,the average particle size of the experimental samples decreases and the specific surface area apparently increases,which leads to the decomposition temperatures of MgH_(2)and Mg_(2)NiH_(4)slightly shift to lower temperatures.Moreover,Mg_(2)Ni and LaH_(x)(x=2,3)have been proven to be stable catalysts during long-term cycling,which can still uniformly distribute within the powders after 200 cycles. 展开更多
关键词 mg-based hydrogen storage alloys Cycle stability Microstructure evolution Catalyst stability THERMODYNAMICS
下载PDF
Magnesium alloys as alternative anode materials for rechargeable magnesium-ion batteries:Review on the alloying phase and reaction mechanisms
8
作者 Dedy Setiawan Hyeonjun Lee +6 位作者 Jangwook Pyun Amey Nimkar Netanel Shpigel Daniel Sharon Seung-Tae Hong Doron Aurbach Munseok S.Chae 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3476-3490,共15页
Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electro... Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electrochemical characteristics of Mg-alloy anode materials.While Mg metal anodes provide high volumetric capacity and dendrite-free electrodeposition,their practical application is hindered by challenges such as sluggish Mg^(2+)ion diffusion and electrolyte compatibility.Alloy-type anodes that incorporate groups XIII,XIV,and XV elements have the potential to overcome these limitations.We review various Mg alloys,emphasizing their alloying/dealloying reaction mechanisms,their theoretical capacities,and the practical aspects of MIBs.Furthermore,we discuss the influence of the electrolyte composition on the reversibility and efficiency of these alloy anodes.Emphasis is placed on overcoming current limitations through innovative materials and structural engineering.This review concludes with perspectives on future research directions aimed at enhancing the performance and commercial viability of Mg alloy anodes and contributing to the development of high-capacity,safe,and cost-effective energy storage systems. 展开更多
关键词 Magnesium-ion battery Anode materials Magnesium alloy Electrochemical alloying
下载PDF
Thermal stability of nanocrystalline Mg-based alloys prepared via mechanical alloying 被引量:2
9
作者 M.RAJABI R.M.SEDIGHI S.M.RABIEE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期398-405,共8页
Thethermal stability and the kinetics of grain growth of nanocrystalline Mg-6Al-1Zn and Mg-6Al-1Zn-1Si alloys prepared via mechanical alloying were investigated. It started with elemental powders, using a variety of a... Thethermal stability and the kinetics of grain growth of nanocrystalline Mg-6Al-1Zn and Mg-6Al-1Zn-1Si alloys prepared via mechanical alloying were investigated. It started with elemental powders, using a variety of analytical techniques including differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectrometry. The kinetics of grain growth in isothermal annealing was investigated. The XRD results show that, although the grain sizes of both material systems increase as the annealing temperature rises, the Si-containing system displays a relatively smaller grain size, i.e., 60 nm compared with 72 nm in Mg-6Al-1Zn system, after being exposed to 350 ℃ for 1 h. The second-phase intermetallic particle Mg2Si formed during the isothermal annealing of Mg-6Al-1Zn-1Si system could influence not only the activation energy but also the exponent of kinetic equation. Higher hardness values obtained in the Si-containing system would be due to the formation of Mg2Si intermetallic phase. 展开更多
关键词 mg-based alloys thermal stability grain growth mechanical alloying
下载PDF
Thermodynamic modeling of the La-Mg-Y system and Mg-based alloys database 被引量:2
10
作者 DU Zhenmin GUO Cuiping LI Changrong ZHANG Weijing 《Rare Metals》 SCIE EI CAS CSCD 2006年第5期492-500,共9页
As an example of the La-Mg-Y system, the method how to set up the themaodynamic model of individual phases was introduced in the process of thermodynamic optimization. The solution phases (liquid, body-centered cubic... As an example of the La-Mg-Y system, the method how to set up the themaodynamic model of individual phases was introduced in the process of thermodynamic optimization. The solution phases (liquid, body-centered cubic, face-centered cubic, hexagonal close-packed and double hexagonal close-packed) were modeled with the Redlich-Kister equation. The compound energy model has been used to describe the thermodynamic functions of the intermetallic compounds in the La-Mg-Y systems. The compounds Mg2Y, Mg24Y5, Mg12La, Mg17La2, Mg41Las, Mg3La and Mg2La in the La-Mg-Y system were treated as the formulae (Mg,Y)2(La,Mg,Y), Mg24(La,Mg,Y)4Y, Mg12(La, Y), Mg17(La,Y)2, Mg41(La,Y)5, Mg3(La,Mg,Y) and Mg2(La, Y), respectively. A model (La, Mg,Y)0.5(La,Mg,Y)0.5 was applied to describe the compound MgM formed by MgLa and MgY in order to cope with the order-disorder transition between body-centered cubic solution (A2) and MgM with CsCl-type structure (B2) in the La-Mg-Y system. The Gibbs energies of individual phases were optimized in the La-Mg, La-Y and La-Mg-Y systems by CALPHAD technique. The projection of the liquidus surfaces for the La-Mg-Y system was predicted. The Mg-based alloys database including 36 binary and 15 ternary systems formed by Mg, Al, Cu, Ni, Mn, Zn and rare earth elements was set up in SGTE standard. 展开更多
关键词 La-Mg-Y system thermodynamic modeling CALPHAD technique order-disorder transition mg-based alloys database
下载PDF
Role of micro-Ca/In alloying in tailoring the microstructural characteristics and discharge performance of dilute Mg-Bi-Sn-based alloys as anodes for Mg-air batteries
11
作者 Fei-er Shangguan Wei-li Cheng +6 位作者 Yu-hang Chen Ze-qin Cui Hui Yu Hong-xia Wang Li-fei Wang Hang Li Hua Hou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期251-266,共16页
The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are e... The influence of micro-Ca/In alloying on the microstructural charac teristics,electrochemical behaviors and discharge properties of extruded dilute Mg-0.5Bi-0.5Sn-based(wt.%)alloys as anodes for Mg-air batteries are evaluated.The grain size and texture intensity of the Mg-Bi-Sn-based alloys are significantly decreased after the Ca/In alloying,particularly for the In-containing alloy.Note that,in addition to nanoscale Mg_(3)Bi_(2)phase,a new microscale Mg_(2)Bi_(2)Ca phase forms in the Ca-containing alloy.The electrochemical test results demonstrate that Ca/In micro-alloying can enhance the electrochemical activity.Using In to alloy the Mg-Bi-Sn-based alloy is effective in restricting the cathodic hydrogen evolution(CHE)kinetics,leading to a low self-corrosion rate,while severe CHE occurred after Ca alloying.The micro-alloying of Ca/In to Mg-Bi-Sn-based alloy strongly deteriorates the compactness of discharge products film and mitigates the"chunk effect"(CE),hence the cell voltage,anodic efficiency as well as discharge capacity are greatly improved.The In-containing alloy exhibits outstanding discharge performance under the combined effect of the modified microstructure and discharge products,thus making it a potential anode material for primary Mg-air battery. 展开更多
关键词 Mg-air batteries Mg-Bi-Sn based alloys Electrochemical behaviors Discharge properties
下载PDF
Development of Mg-based Hydrogen Storage Alloy 被引量:1
12
作者 Lian bang WANG, Yijing WANG and Hualang YUAM Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, China Manuscript received June 30, 2000, in revised form September 20, 20001 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第6期590-596,共7页
Mg-based hydrogen storage alloys are considered as a promising candidate for hydrogen system because of its lightweight, high storage capacity, low price and rich mineral resources. In detail, we reviewed the preparat... Mg-based hydrogen storage alloys are considered as a promising candidate for hydrogen system because of its lightweight, high storage capacity, low price and rich mineral resources. In detail, we reviewed the preparation and properties of Mg-Ni-based hydrogen storage alloys. All kinds of attempts have been done to improve the hydriding and dehydriding behaviors. It is found that the partial substitution of foreign elements can decrease the hydrogen absorption temperature, especially the substitution of a more electronegative element, such as AI and Mn. Mechanical alloying (MA) and mechanical grinding (MG) are the most effective methods to improve the hydriding/dehydriding kinetics and electrochemical capacity, and decrease the desorption temperature. but the corrosion resistance is so poor that the 80% of maximum capacity is lost within ten cycles. Microencapsulation is a useful measurement for improving the corrosion resistance and electrocatalytic activity. fn order to improve the properties of the alloys for practical application, the alloys should have a large number of defects, which give activated sites, subsequently, MA, MG and electroless plating should be used to improve the hydriding/dehydriding kinetics and protect the surface of alloys, respectively. The new composite Mg-based alloys give a new way for the hydrogen storage material to practical application. Furthermore we put forward several problems which will be discussed in future. 展开更多
关键词 Development of mg-based Hydrogen Storage alloy NI
下载PDF
Recent Progress on Electrode Characteristics of Mg and Mg-Based Hydrogen Storage Alloys
13
作者 王仲民 Chi Ying Vanessa Li 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期358-362,共5页
Recent development of Mg and Mg-based hydrogen storage alloys used in Ni-MH battery was discussed extensively. The results obtained from recent studies prove that these alloys with nanocrystalline/amorphous structure ... Recent development of Mg and Mg-based hydrogen storage alloys used in Ni-MH battery was discussed extensively. The results obtained from recent studies prove that these alloys with nanocrystalline/amorphous structure formed by mechanical alloying (MA) or mechanical grinding (MG) have good electrode characteristics. In general, MA or MG, and elemental substitution alloying are regarded as the effective means to seek new system of Mg-based alloys and nano-composite with improved electrode characteristics. However, until now, the currently known improvement in these electrode characteristics is still far from reach to that required for commercial application. 展开更多
关键词 Mg and mg-based Ni-MH battery Electrode characteristics mechanical alloying (MA)
下载PDF
Shell and shrinking core kinetics model of Mg-based hydrogen storage alloys
14
作者 于振兴 王尔德 +3 位作者 张文丛 房文斌 孙宏飞 梁吉 《中国有色金属学会会刊:英文版》 CSCD 2005年第S2期178-182,共5页
The kinetics equation of the Mg-based hydrogen storage alloys (Mg-Ni-MO) was established by the shell and shrinking core model. The total coefficients of the kinetics equation of the hydrogen absorption and desorption... The kinetics equation of the Mg-based hydrogen storage alloys (Mg-Ni-MO) was established by the shell and shrinking core model. The total coefficients of the kinetics equation of the hydrogen absorption and desorption process with shell diffusion as the controlling step were determined by semi-empirical and semi-theoretical methods, and the apparent activation energy of the hydrogen absorption process was obtained. The calculation results can well accord with the experimental data, and can well forecast the hydrogen storage capacity and absorption rate at different times. By using the kinetics equation, the effects of temperature and pressure on the hydrogen storage process can also be well understood. The kinetics equation is helpful for the design of the hydrogen storage container. 展开更多
关键词 mg-based alloyS hydrogen storage SHELL and CORE SHRINKING model KINETICS EQUATION
下载PDF
Effects of doping Fe and Al on microstructure and electrochemical characteristics of Mg-based hydrogen storage alloys
15
作者 谢昭明 《Journal of Chongqing University》 CAS 2005年第4期218-222,共5页
The Mg-based hydrogen storage alloys Mg2Ni, Mg2Ni0.7Fe0.3 and Mgl.7Alo.3Ni were successfully synthesized by a two-step process (sintering and ball milling). The crystal structure and microstructure were examined by ... The Mg-based hydrogen storage alloys Mg2Ni, Mg2Ni0.7Fe0.3 and Mgl.7Alo.3Ni were successfully synthesized by a two-step process (sintering and ball milling). The crystal structure and microstructure were examined by X-ray diffraction, Scanning Electron Microscope and Malvern particle size analyzer. New phase appears in the tripe alloys doped with A1 and Fe, and the particle size ranges from 3μm to 5 μm. The electrochemical performance studies indicate that the partial substitution of AI for Mg, and Fe for Ni significantly improve the cycle life, reversibility of hydrogen absorption and desorption. The diffusion process is the control step in the electrode reaction of hydrogen storage alloys. 展开更多
关键词 mg-based hydrogen storage alloys two-slep process electrochemical properties
下载PDF
Effects of Cr content on electrochemical properties of melt-spun Al_(75-x)Si_(25)Cr_x alloy anodes for lithium-ion batteries
16
作者 梁普 张林萍 +5 位作者 汪飞 孙占波 胡青 杨森 王力群 宋晓平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第6期1393-1400,共8页
Melt-spun Al75-xSi25Crx (x=2, 4, 7, 10, mole fraction, %) alloys were investigated as anode materials for lithium-ion batteries. The as-quenched ribbons consist of nano-grains and metallic glass. The electrochemical... Melt-spun Al75-xSi25Crx (x=2, 4, 7, 10, mole fraction, %) alloys were investigated as anode materials for lithium-ion batteries. The as-quenched ribbons consist of nano-grains and metallic glass. The electrochemical measurements reveal that an activation behavior is exhibited in the anodes. The specific capacity of the A173Si25Cr2 anodes can reach a maximum of 1119 mA.h/g and maintain at 586 mA·hg after 30 cycles. A more stable cycle performance is shown and a capacity loss is only 24% over 30 cycles for Al71Si25Cr4. The intermetallic compounds with Li cannot be detected in the lithiated anodes. After the ribbons were annealed, the specific capacities become much lower due to the formation of inert Al13SiaCr4, and an A1Li phase can be tested in the lithiated anodes. The Cr dissolved in the non-equilibrium alloys causes low lithiation activity and strong structure stability, which could be the main reason of the activation and a restriction of structure evolution. 展开更多
关键词 lithium-ion battery Al-Si-Cr alloy melt spinning electrochemical property lithiation activity
下载PDF
Research of heat treatment of low-Co AB_5 type hydrogen storage alloys for MH-Ni batteries 被引量:6
17
作者 GUOJinghong CHENDemin +2 位作者 LIUGuozhong YANGKe MAJun 《Rare Metals》 SCIE EI CAS CSCD 2003年第3期175-178,共4页
The effects of low-Co AB_5 type hydrogen storage alloys prepared by quenchingand annealing on the performances of MH-Ni batteries were investigated, and the characteristics ofthe low-Co AB_5 type hydrogen storage allo... The effects of low-Co AB_5 type hydrogen storage alloys prepared by quenchingand annealing on the performances of MH-Ni batteries were investigated, and the characteristics ofthe low-Co AB_5 type hydrogen storage alloys were compared with those of the high-Co AB_5 typehydrogen storage alloy as well. The results showed that the faster the cooling of the low-Cohydrogen storage alloy is, the better homogeneity of the chemical composition for the alloy and thelonger cycle life of the battery are, but the electrochemical discharge capacity and high-ratedischarge ability are reduced. The high-rate discharge ability and charge retention of MH-Nibatteries for the conventional as-cast annealed low-Co hydrogen storage alloy were superior to thosefor the rapidly quenched low-Co hydrogen storage alloy and the high-Co hydrogen storage alloy, buta little inferior in the cycle life. 展开更多
关键词 storage energy technology low-Co AB_5type hydrogen storage alloy ANNEALING MH-Ni battery
下载PDF
First-principles study of interphase Ni_3Sn in Sn-Ni alloy for anode of lithium ion battery 被引量:4
18
作者 侯贤华 胡社军 +3 位作者 李伟善 汝强 余洪文 黄钊文 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第9期3422-3427,共6页
This paper investigates the mechanism of Li insertion into interphase Ni3Sn in Ni-Sn alloy for the anode of lithium ion battery by means of the first-principles plane-wave pseudopotential. Compared with other phases, ... This paper investigates the mechanism of Li insertion into interphase Ni3Sn in Ni-Sn alloy for the anode of lithium ion battery by means of the first-principles plane-wave pseudopotential. Compared with other phases, it is found that the Ni3Sn has larger relative expansion ratio and lower electrochemical potential, with its specific plateaus voltage around 0.3 eV when lithium atoms are filled in all octahedral interstitial sites, and the relative expansion ratio increasing dramatically when the lithiated phase transits from octahedral interstitial sites to tetrahedral interstitial sites. So this phase is a devastating phase for whole alloy electrode materials. 展开更多
关键词 Sn-Ni alloy FIRST-PRINCIPLE electronic structure lithium ion battery
下载PDF
Review of silicon-based alloys for lithium-ion battery anodes 被引量:7
19
作者 Zhi-yuan Feng Wen-jie Peng +4 位作者 Zhi-xing Wang Hua-jun Guo Xin-hai Li Guo-chun Yan Jie-xi Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第10期1549-1564,共16页
Silicon(Si)is widely considered to be the most attractive candidate anode material for use in next-generation high-energy-density lithium(Li)-ion batteries(LIBs)because it has a high theoretical gravimetric Li storage... Silicon(Si)is widely considered to be the most attractive candidate anode material for use in next-generation high-energy-density lithium(Li)-ion batteries(LIBs)because it has a high theoretical gravimetric Li storage capacity,relatively low lithiation voltage,and abundant resources.Consequently,massive efforts have been exerted to improve its electrochemical performance.While some progress in this field has been achieved,a number of severe challenges,such as the element’s large volume change during cycling,low intrinsic electronic conductivity,and poor rate capacity,have yet to be solved.Methods to solve these problems have been attempted via the development of nanosized Si materials.Unfortunately,reviews summarizing the work on Si-based alloys are scarce.Herein,the recent progress related to Si-based alloy anode materials is reviewed.The problems associated with Si anodes and the corresponding strategies used to address these problems are first described.Then,the available Si-based alloys are divided into Si/Li-active and inactive systems,and the characteristics of these systems are discussed.Other special systems are also introduced.Finally,perspectives and future outlooks are provided to enable the wider application of Si-alloy anodes to commercial LIBs. 展开更多
关键词 SILICON alloy ANODE lithium-ion battery
下载PDF
First-principles calculations and experimental studies of Sn-Zn alloys as negative electrode materials for lithium-ion batteries 被引量:3
20
作者 RU Qiang PENG Wei ZHANG Zhiwen HU Shejun LI Yanling 《Rare Metals》 SCIE EI CAS CSCD 2011年第2期160-165,共6页
The physical characters and electrochemical properties of various phases in a Sn-Zn electrode, such as formation energy, plateau potential, specific capacity, as well as volume expansion, were calculated by the first-... The physical characters and electrochemical properties of various phases in a Sn-Zn electrode, such as formation energy, plateau potential, specific capacity, as well as volume expansion, were calculated by the first-principles plane-wave pseudo-potential method based on the den- sity functional theory. Sn-Zn films were also deposited on copper foils by an electroless plating technique. The actual composition and chemical characters were explored by scanning electron microscopy (SEM), X-ray diffraction (XRD), plasma atomic emission spectrometry (ICP), and constant current charge/discharge measurements (CC). The results show that separation phases with tin and zinc including a small quantity of Cu6Sn5 phase were obtained, the initial lithium insertion capacity of the Sn-Zn film was 661 mAh/g, and obvious potential pla- teaus of about 0.4 V and 0.7 V were displayed, which is in accordance with the results of theoretical calculations. The capacity of the Sn-Zn film decreased seriously with the increase of cycle number. 展开更多
关键词 lithium batteries electrochemical electrodes tin alloys first-principles calculations
下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部