期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hydrolysis hydrogen production mechanism of Mg10Ni10Ce alloy surface modified by SnO_(2) nanotubes in different aqueous systems 被引量:1
1
作者 Xiaojiang Hou Lu Yang +6 位作者 Kaiming Hou Hongchang Shi Lei Feng Guoquan Suo Xiaohui Ye Li Zhang Yanling Yang 《Green Energy & Environment》 SCIE CSCD 2021年第1期124-137,共14页
(Mg-10wt%Ni)-10wt%Ce(Mg10Ni10Ce)was ball-milled with SnO_(2)nanotubes and Mg10Ni10Ce-xSnO_(2)(x¼0,5,10 and 15 wt%)composites have been prepared.The phase compositions,microstructures,morphologies and hydrolysis H... (Mg-10wt%Ni)-10wt%Ce(Mg10Ni10Ce)was ball-milled with SnO_(2)nanotubes and Mg10Ni10Ce-xSnO_(2)(x¼0,5,10 and 15 wt%)composites have been prepared.The phase compositions,microstructures,morphologies and hydrolysis H2 generation performance in different aqueous systems(distilled water,tap water and simulated seawater)have been investigated and the corresponding hydrolysis mechanism of Mg10Ni10Ce and Mg10Ni10CeeSnO_(2)has been proposed.Adding a small amount of SnO_(2)nanotubes can significantly enhance the hydrolysis reaction of Mg10Ni10Ce,especially the initial hydrolysis kinetics and the final H_(2) generation yield.Unfortunately,the Mg10Ni10Ce-xSnO_(2)hardly reacts with distilled water at room temperature.The hydrolysis reaction rate of Mg10Ni10Cee5SnO_(2)composite in tap water is still very slow with only 17.3%generation yield after 1 h at 303 K.Fortunately,in simulated seawater(3.5 wt%NaCl solution),the hydrolytic H2 generation behavior of the Mg10Ni10Cee5SnO_(2)composite has been greatly improved,which can release as high as 468.6 mL g^(-1 )H_(2) with about 60.9%generation yield within 30 s at 303 K.The Cl destroys the passivation layer on MgeNieCe alloy surface and the added SnO_(2)nanotubes accelerate the hydrolysis reaction rate and enhance the H2 generation yield.The Mg10Ni10Cee5SnO_(2)composite can rapidly generate a large amount of H2 in simulated seawater in a short time,which is expected to be applied on portable H2 generators in the future. 展开更多
关键词 mg10ni10ce Hydrogen production Surface modification Hydrolysis behavior Aqueous systems
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部