The Suizhou meteorite is a heavily shocked and melted vein-containing L6 chondrite.It contains a minor amount of diopside with a(Ca_(0.419)Mg_(0.466)Fe_(0.088))SiO_(3)composition,and a shock-metamorphosed diopside gra...The Suizhou meteorite is a heavily shocked and melted vein-containing L6 chondrite.It contains a minor amount of diopside with a(Ca_(0.419)Mg_(0.466)Fe_(0.088))SiO_(3)composition,and a shock-metamorphosed diopside grain associated with ringwoodite and lingunite was found in a melt vein of this meteorite.Our electron microprobe,transmission electron microscopic and Raman spectroscopic analyses revealed four silicate phases with different compositions and structures inside this shock-metamorphosed diopside grain,termed phase A,B,C and D in this paper.Phase A is identified as orthorhombic(Ca_(0.663)-Mg_(0.314))SiO_(3)-perovskite which is closely associated with phase B,the vitrified(Mg_(0.642)Ca_(0.290)Fe_(0.098))SiO_(3)perovskite.Phase D is assigned to be(Mg_(0.578)Ca_(0.414))SiO_(3)majorite which is associated with phase C,the vetrified Carich Mg-perovskite with a(Mg_(0.853)Ca_(0.167))SiO_(3)composition.Based on high-pressure and high-temperature experiments,the diopside grain in the melt vein of the Suizhou meteorite would have experienced a P–T regime of 20–24GPa and 1800–>2000℃.Such P–T conditions are high enough for the decomposition of the diopside and the formation of four different silicate phases.The orthorhombic(Ca_(0.663)Mg_(0.314))SiO_(3)perovskite found in the Suizhou L6 chondrite might be considered as the third lower-mantle silicate mineral after bridgmanite and davemaoite after the detailed analyses of its crystal structure and physical properties being completed.展开更多
采用机械合金化方法制备Mg_3Sb_2金属间化合物,研究了摩尔比为3:2的Mg、Sb混合粉末的机械合金化过程,通过改变球磨转速和球料比找到制备Mg_3Sb_2的最佳工艺参数,对球磨后的粉末进行了X射线衍射(XRD)、差示扫描量热法(DSC)、扫描电镜(SEM...采用机械合金化方法制备Mg_3Sb_2金属间化合物,研究了摩尔比为3:2的Mg、Sb混合粉末的机械合金化过程,通过改变球磨转速和球料比找到制备Mg_3Sb_2的最佳工艺参数,对球磨后的粉末进行了X射线衍射(XRD)、差示扫描量热法(DSC)、扫描电镜(SEM)测试分析。结果表明,机械合金化方法可制备出细小的Mg_3Sb_2粉末,最佳球磨工艺参数是500 r/min的球磨转速、15:1的球料比。由热力学计算可知,Mg-Sb二元合成反应的绝热温度Tad=2149.5 K。DSC分析知,随球磨时间的延长,燃烧反应的临界温度会下降。经Kissinger公式计算原始混合粉末的激活能为94.45 k J/mol,球磨2 h之后的激活能为82.23 k J/mol,说明球磨使粉末内部产生大量晶体缺陷和位错等,体系能量增加,反应激活能降低,从而促进合金化的进程。展开更多
文摘The Suizhou meteorite is a heavily shocked and melted vein-containing L6 chondrite.It contains a minor amount of diopside with a(Ca_(0.419)Mg_(0.466)Fe_(0.088))SiO_(3)composition,and a shock-metamorphosed diopside grain associated with ringwoodite and lingunite was found in a melt vein of this meteorite.Our electron microprobe,transmission electron microscopic and Raman spectroscopic analyses revealed four silicate phases with different compositions and structures inside this shock-metamorphosed diopside grain,termed phase A,B,C and D in this paper.Phase A is identified as orthorhombic(Ca_(0.663)-Mg_(0.314))SiO_(3)-perovskite which is closely associated with phase B,the vitrified(Mg_(0.642)Ca_(0.290)Fe_(0.098))SiO_(3)perovskite.Phase D is assigned to be(Mg_(0.578)Ca_(0.414))SiO_(3)majorite which is associated with phase C,the vetrified Carich Mg-perovskite with a(Mg_(0.853)Ca_(0.167))SiO_(3)composition.Based on high-pressure and high-temperature experiments,the diopside grain in the melt vein of the Suizhou meteorite would have experienced a P–T regime of 20–24GPa and 1800–>2000℃.Such P–T conditions are high enough for the decomposition of the diopside and the formation of four different silicate phases.The orthorhombic(Ca_(0.663)Mg_(0.314))SiO_(3)perovskite found in the Suizhou L6 chondrite might be considered as the third lower-mantle silicate mineral after bridgmanite and davemaoite after the detailed analyses of its crystal structure and physical properties being completed.
基金Supported by the National Basic Research Program of China (973 Program,2010CB732300)the National Natural Science Foundation of China (20673037,20601008)the National Key Technologies R&D Program of China (2007BAJ03B01)
文摘采用机械合金化方法制备Mg_3Sb_2金属间化合物,研究了摩尔比为3:2的Mg、Sb混合粉末的机械合金化过程,通过改变球磨转速和球料比找到制备Mg_3Sb_2的最佳工艺参数,对球磨后的粉末进行了X射线衍射(XRD)、差示扫描量热法(DSC)、扫描电镜(SEM)测试分析。结果表明,机械合金化方法可制备出细小的Mg_3Sb_2粉末,最佳球磨工艺参数是500 r/min的球磨转速、15:1的球料比。由热力学计算可知,Mg-Sb二元合成反应的绝热温度Tad=2149.5 K。DSC分析知,随球磨时间的延长,燃烧反应的临界温度会下降。经Kissinger公式计算原始混合粉末的激活能为94.45 k J/mol,球磨2 h之后的激活能为82.23 k J/mol,说明球磨使粉末内部产生大量晶体缺陷和位错等,体系能量增加,反应激活能降低,从而促进合金化的进程。