Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In...Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In this work, we carry out first-principles calculations on various cases of Ce3+ centers in Ca3Sc2Si3O12 by considering the effects of the charge com- pensations related to N3-, Sc3+, Mn2+, Mg2+, and Na+. Firstly, the local structures around Ce3+ are optimized by using density functional theory calculations with supercell model. The 4f→5d transition energies of Ce3+ are then obtained from the CASSCF/CASPT2/RASSI-SO calculations performed on Ce3+-centered embedded clusters. The calculated energies support the previous assignments of the experimental spectra. Especially, a previously unclear peak is identified to be caused by Sc3+ substituting Si4+. The results show that the first-principles calculations can be used as an effective tool for predicting and interpreting spectroscopic properties of the phosphors.展开更多
A new mixing method was developed for solid-state reaction synthesis of SrAl2O4:Eu2+,Dy3+ long afterglow phosphors.The morphology and crystal structure of the phosphors were analyzed with scanning electron microscope(...A new mixing method was developed for solid-state reaction synthesis of SrAl2O4:Eu2+,Dy3+ long afterglow phosphors.The morphology and crystal structure of the phosphors were analyzed with scanning electron microscope(SEM) and X-ray diffractometer(XRD).The excitation and emission spectra of the long afterglow phosphors were measured,and the main emission band was around 514 nm.The decay time of the product was measured and compared with the phosphors prepared using dry-mixing method and wet-mixing method.It ...展开更多
Organic substance such as solvent and resin's effect on luminescent capability of SrAl2O4:Eu2+ , Dy3+ phosphor was studied. Some organic solvents and resins were selected for experimentation. The results indicate ...Organic substance such as solvent and resin's effect on luminescent capability of SrAl2O4:Eu2+ , Dy3+ phosphor was studied. Some organic solvents and resins were selected for experimentation. The results indicate that those organic solvents will not have negative effect on the applied capability of SrAl2O4:Eu2+ , Dy3+ phosphor. Adopting the organic resins and covering method, the afterglow luminance of SrAl2O4:Eu2+ , Dy3+ phosphor was increased by 85.01% and 82.51%.展开更多
The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with r...The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with reducing atmosphere (20% H2 and 80% N2). The phase evolution, morphology and afterglow fluorescent properties are systematically studied by the various instruments of XRD, FE-SEM, PLE/PL spectroscopy and fluorescence decay analysis. The PL spectra shows that the Sr1-3xAl2O4:Eu2+x/Dy3+ 2x phosphors display vivid green emission at s519 nm (4f65d1!4f7 transition of Eu2+) with monitoring of the maximum excitation wavelength at s334 nm (8S7=2!6IJ transition of Eu2+), among which the optimal concentration of Eu2+ and Dy3+ is 15 at.% and 30 at.%, respectively. The color coordinates and temperature of Sr1-3xAl2O4:Eu2+ x/Dy3+ 2x phosphors are approximately at (s0.27, s0.57) and s6700 K, respectively. On the above basis, the M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors is obtained by the same method. The PL spectra of these phosphors shows the strongest blue emission at s440 nm and cyan emission at s499 nm under s334 nm wavelength excitation, respectively, which are blue shifted comparing to Sr1??3xAl2O4:Eu2+ x/Dy3+ 2x phosphors. The color coordinates and temperatures of M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors are approximately at (s0.18, s0.09), s2000 K and (s0.18, s0.42), s11600 K, respectively. In this work, long afterglow materials of green, blue and cyan aluminates phosphors with excellent properties have been prepared, in order to obtain wide application in the field of night automatic lighting and display.展开更多
Kinetics and mechanism of oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction were researched in air using vertical high temperature thermal dilatometer from 25℃to 1...Kinetics and mechanism of oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction were researched in air using vertical high temperature thermal dilatometer from 25℃to 1400℃.It is shown that oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced Al4C3 in situ reaction is the common logarithm of oxidation time t and the oxygen partial pressure P inside MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction in air at 1400℃is as follows:P=F(-2.75×10^-4A+2.13×10^-3)lnt.The nonsteady diffusion kinetic equation of O2 at 1400℃inside the composites is as follows:J=De lnt.Acceleration of the total diffusional?flux of oxygen inside the composites at 1400℃is in inverse proportion to the oxidation time.The nonsteady state effective diffusion coefficient De of O2(g)inside the composites decreases in direct proportional to the increase of the amount of metallic aluminium.The method of preventing the oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction is to increase the amount of Al.The slag erosion index of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 0.47 times that of MgO-CaO brick used in the lining above slag line area of a VOD stainless steel-making vessel.HMOR of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 26.7 MPa,HMOR of the composite is 3.6 times the same as that of MgO-CaO brick used in the lining above slag line area of a VOD vessel.Its service life is two times as many as that of MgO-CaO brick.展开更多
ZHOU Bai-Bin *,1,2 WEI Yong-De 1 LI Zhong-Hua 1 ( 1 Department of Applied Chemistry,Ha rbin Institute of Technology £?Harbin£±£ì£°£°£°£±£(c)( 2 Department of Chemistry,Harbin Norm...ZHOU Bai-Bin *,1,2 WEI Yong-De 1 LI Zhong-Hua 1 ( 1 Department of Applied Chemistry,Ha rbin Institute of Technology £?Harbin£±£ì£°£°£°£±£(c)( 2 Department of Chemistry,Harbin Normal University£?Harbin£±£ì£°£°£?£°£(c) The air-solid interface reaction of Ce,Lu with K10 H 3[Gd (SiMo 4 W£*O£3£1£(c) 2]through chemistry-heated permeation is reported for the fi rst time£(r)The permeated complex is characterized by ICP and the result shows tha t the mini mum Ce,Lu can permeate into the inner sph ere of K 10 H £3 £?Gd £¨SiMo £′ W £* O £3£1 £(c) 2]The IR ,XRD patterns give the eviden ce that after permeation the comple x still keeps the Keggin structure,howe ver,its crystal structure is different from the complex before permeation£(r)The cond uctivity of the permeated complex has been measured with the four-electr ode method and the data show that the co nductivity of the complex after permeation is 10 6 times higher than that of the sample before permeation and reaches £′£(r)84 6×10 -1 S·cm -1 £(r)These indicate that the permeated c omplex is a good solid electrolyte and further appli cations are also expected£(r)展开更多
基金This work was supported by the National Key Basic Research Program of China (No.2013CB921800), the National Natural Science Foundation of China (No.11374291, No.11311120047, No.11274299, No.11447197, and No.11204292), the Fundamen- tal Research Funds for the Central Universities (No.WK20304200), the Anhui Provincial Natural Science Foundation (No.1508085QA09). The numerical calculations have been partially done on the super- computing system in the Supercomputing Center of University of Science and Technology of China.
文摘Charge compensation plays a very important role in modifying the local atomic structure and moreover the spectroscopic property of an isolated luminescent center, and so has been widely adopted in phosphor designs. In this work, we carry out first-principles calculations on various cases of Ce3+ centers in Ca3Sc2Si3O12 by considering the effects of the charge com- pensations related to N3-, Sc3+, Mn2+, Mg2+, and Na+. Firstly, the local structures around Ce3+ are optimized by using density functional theory calculations with supercell model. The 4f→5d transition energies of Ce3+ are then obtained from the CASSCF/CASPT2/RASSI-SO calculations performed on Ce3+-centered embedded clusters. The calculated energies support the previous assignments of the experimental spectra. Especially, a previously unclear peak is identified to be caused by Sc3+ substituting Si4+. The results show that the first-principles calculations can be used as an effective tool for predicting and interpreting spectroscopic properties of the phosphors.
基金supported by the Program for New Century Excellent Talents in the University of China (NCET-06-0179)
文摘A new mixing method was developed for solid-state reaction synthesis of SrAl2O4:Eu2+,Dy3+ long afterglow phosphors.The morphology and crystal structure of the phosphors were analyzed with scanning electron microscope(SEM) and X-ray diffractometer(XRD).The excitation and emission spectra of the long afterglow phosphors were measured,and the main emission band was around 514 nm.The decay time of the product was measured and compared with the phosphors prepared using dry-mixing method and wet-mixing method.It ...
文摘Organic substance such as solvent and resin's effect on luminescent capability of SrAl2O4:Eu2+ , Dy3+ phosphor was studied. Some organic solvents and resins were selected for experimentation. The results indicate that those organic solvents will not have negative effect on the applied capability of SrAl2O4:Eu2+ , Dy3+ phosphor. Adopting the organic resins and covering method, the afterglow luminance of SrAl2O4:Eu2+ , Dy3+ phosphor was increased by 85.01% and 82.51%.
基金the National Natural Science Foundation of China (No. 51602126)the National Key Research and Development Plan of China (No. 2016YFB0303505)+1 种基金China and University of Jinan Postdoctoral Science Foundation (No. 2017M622118 and XBH1716)the 111 Project of International Corporation on Advanced Cement-based Materials (D17001).
文摘The long afterglow fluorescent material of M1-3xAl2O4:Eu2+ x/Dy3+2x(M2+= Sr2+, Ca2+ and Ba2+) phosphors are successfully synthesized by calcining precursor obtained via co-precipitation method at 1300oC for 4 h with reducing atmosphere (20% H2 and 80% N2). The phase evolution, morphology and afterglow fluorescent properties are systematically studied by the various instruments of XRD, FE-SEM, PLE/PL spectroscopy and fluorescence decay analysis. The PL spectra shows that the Sr1-3xAl2O4:Eu2+x/Dy3+ 2x phosphors display vivid green emission at s519 nm (4f65d1!4f7 transition of Eu2+) with monitoring of the maximum excitation wavelength at s334 nm (8S7=2!6IJ transition of Eu2+), among which the optimal concentration of Eu2+ and Dy3+ is 15 at.% and 30 at.%, respectively. The color coordinates and temperature of Sr1-3xAl2O4:Eu2+ x/Dy3+ 2x phosphors are approximately at (s0.27, s0.57) and s6700 K, respectively. On the above basis, the M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors is obtained by the same method. The PL spectra of these phosphors shows the strongest blue emission at s440 nm and cyan emission at s499 nm under s334 nm wavelength excitation, respectively, which are blue shifted comparing to Sr1??3xAl2O4:Eu2+ x/Dy3+ 2x phosphors. The color coordinates and temperatures of M0:55Al2O4:Eu2+ 0:15/Dy3+ 0:3 (M2+= Ca2+ and Ba2+) phosphors are approximately at (s0.18, s0.09), s2000 K and (s0.18, s0.42), s11600 K, respectively. In this work, long afterglow materials of green, blue and cyan aluminates phosphors with excellent properties have been prepared, in order to obtain wide application in the field of night automatic lighting and display.
基金Funded by the National Torch Plan of China(No.2005EB031110)the National Scientific and Technique Program of Ninth-five Year Plan(96-22-01-19)。
文摘Kinetics and mechanism of oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction were researched in air using vertical high temperature thermal dilatometer from 25℃to 1400℃.It is shown that oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced Al4C3 in situ reaction is the common logarithm of oxidation time t and the oxygen partial pressure P inside MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction in air at 1400℃is as follows:P=F(-2.75×10^-4A+2.13×10^-3)lnt.The nonsteady diffusion kinetic equation of O2 at 1400℃inside the composites is as follows:J=De lnt.Acceleration of the total diffusional?flux of oxygen inside the composites at 1400℃is in inverse proportion to the oxidation time.The nonsteady state effective diffusion coefficient De of O2(g)inside the composites decreases in direct proportional to the increase of the amount of metallic aluminium.The method of preventing the oxidation induced contraction of MgAl2O4 spinel carbon composites reinforced by Al4C3 in situ reaction is to increase the amount of Al.The slag erosion index of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 0.47 times that of MgO-CaO brick used in the lining above slag line area of a VOD stainless steel-making vessel.HMOR of MgO-Al2O3 spinel carbon composite reinforced by Al4C3 in situ reaction is 26.7 MPa,HMOR of the composite is 3.6 times the same as that of MgO-CaO brick used in the lining above slag line area of a VOD vessel.Its service life is two times as many as that of MgO-CaO brick.
文摘ZHOU Bai-Bin *,1,2 WEI Yong-De 1 LI Zhong-Hua 1 ( 1 Department of Applied Chemistry,Ha rbin Institute of Technology £?Harbin£±£ì£°£°£°£±£(c)( 2 Department of Chemistry,Harbin Normal University£?Harbin£±£ì£°£°£?£°£(c) The air-solid interface reaction of Ce,Lu with K10 H 3[Gd (SiMo 4 W£*O£3£1£(c) 2]through chemistry-heated permeation is reported for the fi rst time£(r)The permeated complex is characterized by ICP and the result shows tha t the mini mum Ce,Lu can permeate into the inner sph ere of K 10 H £3 £?Gd £¨SiMo £′ W £* O £3£1 £(c) 2]The IR ,XRD patterns give the eviden ce that after permeation the comple x still keeps the Keggin structure,howe ver,its crystal structure is different from the complex before permeation£(r)The cond uctivity of the permeated complex has been measured with the four-electr ode method and the data show that the co nductivity of the complex after permeation is 10 6 times higher than that of the sample before permeation and reaches £′£(r)84 6×10 -1 S·cm -1 £(r)These indicate that the permeated c omplex is a good solid electrolyte and further appli cations are also expected£(r)