由于铁的磁化特性,对于铁包套的MgB_2线材来说,线材的截面形状和铁包套的厚度都会影响到MgB2超导芯的磁场,进而影响到MgB_2线材的载流能力。文中将建立几种典型的单芯及多芯MgB_2线材模型,并利用有限元方法(finite element method,FEM)...由于铁的磁化特性,对于铁包套的MgB_2线材来说,线材的截面形状和铁包套的厚度都会影响到MgB2超导芯的磁场,进而影响到MgB_2线材的载流能力。文中将建立几种典型的单芯及多芯MgB_2线材模型,并利用有限元方法(finite element method,FEM)分析铁包套对这些模型中超导芯的最大磁场B_(max)和临界电流密度J_c,经过对这几种典型结构的载流能力进行比较,可以得到一些有益于改善铁包套MgB_2线材的载流能力的合理性建议。展开更多
The MgB2 formation was analyzed physically and chemically and the MgB2/Fe wires were fabricated by powder in tube (PIT) technology. The microstructure of MgB2 in wires was studied by the scanning electrical microscope...The MgB2 formation was analyzed physically and chemically and the MgB2/Fe wires were fabricated by powder in tube (PIT) technology. The microstructure of MgB2 in wires was studied by the scanning electrical microscope (SEM), which shows a good connection of grains and the size of MgB2 grain is 13 mm. The results of Jc measured by the standard four probes method show that Jc value reaches 6.1?04 A/cm2 at 20 K in self field.展开更多
The discovery of superconductivity in magnesium diboride (MgB2) has opened up a new field in materials science research. It offers a possibility of a new class of high performance superconducting materials for practic...The discovery of superconductivity in magnesium diboride (MgB2) has opened up a new field in materials science research. It offers a possibility of a new class of high performance superconducting materials for practical applications because of the relatively low cost of fabrication, high critical current densities (Jc) and fields, large coherence length, absence of weak links, higher Tc(TC = 39K) compared with Nb3Sn and Nb-Ti alloys (two or four times that of Nb,,Sn and Nb-Ti alloys). However, the weak flux pinning in the magnetic field remains a major challenge. This paper reports the most interesting results on nanomaterial (SiC and Si) doping in magnesium diboride. The high density of nano-scale defects introduced by doping is responsible for the enhanced pinning. The fabrication method, critical current density, microstructures, flux pinning and cost for magnesium diboride bulks, wires and tapes are also discussed. It is believed that high performance SiC doped MgB2 will have a great potential for many practical applications at 5K to 25K up to 5T.展开更多
Using commercial amorphous B powder (92% in purity) and Mg powder (99% in purity) as starting materials, 19-filament Fe/Cu clad MgB2 wires were fabricated by an in situ powder-in-tube method. Heat treatment was perfor...Using commercial amorphous B powder (92% in purity) and Mg powder (99% in purity) as starting materials, 19-filament Fe/Cu clad MgB2 wires were fabricated by an in situ powder-in-tube method. Heat treatment was performed at 700℃ for 1 h under an argon gas atmosphere. The influence of Mg/B ratio on the microstructure and superconducting properties of the wires was investigated. It was found that the major phases of MgB2 wires were MgB2 accompanied with relatively small amounts of MgO and Fe2B impurities. With 5% excess Mg addition, the onset TC slightly decreased. However, the transport JC at 4.2 K and 4 T reached 1.07×104 A·cm-2, increasing by a factor of 1.4 compared to the stoichiometric sample. Moreover, the Mg1.05B2 sample showed an improved field dependence of JC, suggesting that less voids and smaller grain size of the Mg1.05B2 core lead to better grain connectivity and stronger flux pinning.展开更多
文摘由于铁的磁化特性,对于铁包套的MgB_2线材来说,线材的截面形状和铁包套的厚度都会影响到MgB2超导芯的磁场,进而影响到MgB_2线材的载流能力。文中将建立几种典型的单芯及多芯MgB_2线材模型,并利用有限元方法(finite element method,FEM)分析铁包套对这些模型中超导芯的最大磁场B_(max)和临界电流密度J_c,经过对这几种典型结构的载流能力进行比较,可以得到一些有益于改善铁包套MgB_2线材的载流能力的合理性建议。
基金supported by the National Natural Science Foundation of China(Grant No.50172040)the National High Technology Development Program of China(Grant No.2002-AA306251)
文摘The MgB2 formation was analyzed physically and chemically and the MgB2/Fe wires were fabricated by powder in tube (PIT) technology. The microstructure of MgB2 in wires was studied by the scanning electrical microscope (SEM), which shows a good connection of grains and the size of MgB2 grain is 13 mm. The results of Jc measured by the standard four probes method show that Jc value reaches 6.1?04 A/cm2 at 20 K in self field.
文摘The discovery of superconductivity in magnesium diboride (MgB2) has opened up a new field in materials science research. It offers a possibility of a new class of high performance superconducting materials for practical applications because of the relatively low cost of fabrication, high critical current densities (Jc) and fields, large coherence length, absence of weak links, higher Tc(TC = 39K) compared with Nb3Sn and Nb-Ti alloys (two or four times that of Nb,,Sn and Nb-Ti alloys). However, the weak flux pinning in the magnetic field remains a major challenge. This paper reports the most interesting results on nanomaterial (SiC and Si) doping in magnesium diboride. The high density of nano-scale defects introduced by doping is responsible for the enhanced pinning. The fabrication method, critical current density, microstructures, flux pinning and cost for magnesium diboride bulks, wires and tapes are also discussed. It is believed that high performance SiC doped MgB2 will have a great potential for many practical applications at 5K to 25K up to 5T.
基金the Beijing Municipal Science and Technology Commission (Grant No. Z07000300703)the State Key Development Program for Basic Research of China (Grant No. 2006CB601004)the National High Technology Research and Development Program for Advanced Materials of China (Grant No. 2006AA03Z203)
文摘Using commercial amorphous B powder (92% in purity) and Mg powder (99% in purity) as starting materials, 19-filament Fe/Cu clad MgB2 wires were fabricated by an in situ powder-in-tube method. Heat treatment was performed at 700℃ for 1 h under an argon gas atmosphere. The influence of Mg/B ratio on the microstructure and superconducting properties of the wires was investigated. It was found that the major phases of MgB2 wires were MgB2 accompanied with relatively small amounts of MgO and Fe2B impurities. With 5% excess Mg addition, the onset TC slightly decreased. However, the transport JC at 4.2 K and 4 T reached 1.07×104 A·cm-2, increasing by a factor of 1.4 compared to the stoichiometric sample. Moreover, the Mg1.05B2 sample showed an improved field dependence of JC, suggesting that less voids and smaller grain size of the Mg1.05B2 core lead to better grain connectivity and stronger flux pinning.