Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(C...Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(CPR)and uncover many unconventional physical properties.In this article,we first report the discovery of half-integer Shapiro steps in MgB_(2)focused He ion beam(He-FIB)Josephson junctions.The half-integer steps'dependence on microwave frequency,temperature,microwave power,and magnetic field is also analyzed.We find that the existence of half-integer steps can be controlled by the magnetic field periodically,which is similar to that of high temperature superconductor(HTS)grain boundary junctions,and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed.As a consequence,we mainly attribute the physical origin of half-integer steps in MgB_(2)He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions'array.Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.展开更多
The development of superconducting joining technology for reacted magnesium diboride(MgB_(2))conductors remains a critical challenge for the advancement of cryogen-free MgB_(2)-based magnets for magnetic resonance ima...The development of superconducting joining technology for reacted magnesium diboride(MgB_(2))conductors remains a critical challenge for the advancement of cryogen-free MgB_(2)-based magnets for magnetic resonance imaging(MRI).Herein,the fabrication of superconducting joints using reacted carbon-doped multifilament MgB_(2)wires for MRI magnets is reported.To achieve successful superconducting joints,the powder-in-mold method was employed,which involved tuning the filament protection mechanism,the powder compaction pressure,and the heat treatment condition.The fabricated joints demonstrated clear superconducting-to-normal transitions in self-field,with effective magnetic field screening up to 0.5 T at 20 K.To evaluate the interface between one of the MgB_(2)filaments and the MgB_(2)bulk within the joint,serial sectioning was conducted for the first time in this type of superconducting joint.The serial sectioning revealed space formation at the interface,potentially caused by the volume shrinkage associated with the MgB_(2)formation or the combined effect of the volume shrinkage and the different thermal expansion coefficients of the MgB_(2)bulk,the filament,the mold,and the sealing material.These findings are expected to be pivotal in developing MgB_(2)superconducting joining technology for MRI magnet applications through interface engineering.展开更多
Magnesium diboride(MgB_(2))magnets have the potential to be the next-generation liquid-helium-free magnet for magnetic resonance imaging(MRI)application due to their relatively high superconducting transition temperat...Magnesium diboride(MgB_(2))magnets have the potential to be the next-generation liquid-helium-free magnet for magnetic resonance imaging(MRI)application due to their relatively high superconducting transition temperature,high current density and low raw material cost compared with current commercial niobium-titanium(Nb-Ti)magnets.A typical superconducting magnet includes several coils.To produce an ultra-stable magnetic field for imaging in MRI,a superconducting electromagnet operating in a persistent mode is crucial.Superconducting coils of the electromagnet in MRI are short-circuited to operate in the persistent mode by connecting coils with superconducting joints.Per-sistent joints have been demonstrated for in-situ and ex-situ wires of both mono-and multi-filamentary structures,made predominantly by PIT techniques similar to those used in wire production.To realise further engagement of MgB_(2)in MRI applications,enhancing the performance of MgB_(2)superconducting joints is essential.This literature review summarises research and development on MgB_(2)superconducting joining technology.展开更多
We investigate the effect of ion irradiation on MgB_(2) thin films with small grains of approximately 122 nm and 140 nm.The flux pinning by grain boundaries is insignificant in the pristine MgB_(2) films due to good i...We investigate the effect of ion irradiation on MgB_(2) thin films with small grains of approximately 122 nm and 140 nm.The flux pinning by grain boundaries is insignificant in the pristine MgB_(2) films due to good inter-grain connectivity,but is significantly improved after 120-keV Mn-ion irradiation.The scaling behavior of the flux pinning force density for the ion-irradiated MgB_(2) thin films with nanoscale grains demonstrates the predominance of pinning by grain boundaries,in contrast to the single-crystalline MgB_(2) films where normal point pinning was dominant after low-energy ion irradiation.These results suggest that irradiation-induced defects can accumulate near the grain boundaries in metallic MgB_(2) superconductors.展开更多
Isotope effect on superconductive transition temperature(T_c)is an essential indicator to examine whether the mechanism of superconductors is conventional.Unconventional isotope effect of BiS_(2)-based superconductors...Isotope effect on superconductive transition temperature(T_c)is an essential indicator to examine whether the mechanism of superconductors is conventional.Unconventional isotope effect of BiS_(2)-based superconductors has been previously reported in ambient-pressure tetragonal phase.However,to comprehensively ascertain the nature of superconductivity,the investigation of BiS_(2)-based system in high-pressure structure is highly desirable.In this work,we carried out the first-principles calculations of phonon spectra and superconductivity in high-pressure monoclinic phase of LaO_(0.5)F_(0.5)BiS_(2)with ^(32)S and ^(34)S,and observed that the corresponding isotope coefficient is 0.13≤α≤0.20.This value is much greater than that of BiS_(2)-based superconductors in ambient-pressure phase,but slightly smaller than that of conventional MgB_2.Taking into account the calculated T_(c) lower than experimental results,we finally conclude that the moderate phonon-mediated pairing plays a significant role in forming superconductivity of BiS_(2)-based system in high-pressure phase,moreover,the cooperative multiple paring interactions should also be considered.展开更多
We design two new layered indium halide compounds LaOInF_(2)and LaOInCl_(2)by means of first-principles calculations and evolutionary crystal structure prediction.We find both compounds crystallize in a tetragonal str...We design two new layered indium halide compounds LaOInF_(2)and LaOInCl_(2)by means of first-principles calculations and evolutionary crystal structure prediction.We find both compounds crystallize in a tetragonal structure with P4/nmm space group and have indirect band gaps of 2.58 eV and 3.21 eV,respectively.By substituting O with F,both of them become metallic and superconducting at low temperature.The F-doping leads to strong electron-phonon coupling in the low-energy acoustic phonon modes which is mainly responsible for the induced superconductivity.The total electron-phonon coupling strength are 1.86 and 1.48,while the superconducting transition temperature(T_(c))are about 7.2 K and 6.5 K with 10%and 5%F doping for LaOInF_(2)and LaOInCl_(2),respectively.展开更多
MgB2 is a relatively new superconductor; it has attracted great interest from superconductor researchers all over the world. Thorough investigations have been carried out to study the material fabrication, as well as ...MgB2 is a relatively new superconductor; it has attracted great interest from superconductor researchers all over the world. Thorough investigations have been carried out to study the material fabrication, as well as to study the material and superconducting properties from a fundamental physics point of view. The University of Wollongong has played a very active role in this research and a leading role in the research on high critical current density and high critical magnetic fields. Our recent research on the improvement of critical current density and the upper critical magnetic field by carbon-based compound doping is reviewed in this paper.展开更多
We report on the single crystal growth and superconducting properties of PbTaSe2 with the non-centrosymmetric crystal structure. By using the chemicM vapor transport technique, centimeter-size single crystals are succ...We report on the single crystal growth and superconducting properties of PbTaSe2 with the non-centrosymmetric crystal structure. By using the chemicM vapor transport technique, centimeter-size single crystals are success- fully obtained. The measurement of temperature dependence of electricaJ resistivity p(T) in both normal and superconducting states indicates a quasi-two-dimensional electronic state in contrast to that of polycrystalline samples. Specific heat C(T) measurement reveals a bulk superconductivity with Tc ≈ 3.75K and a specific heat jump ratio of 1.42. All these results are in agreement with a moderately electron-phonon coupled, type-g Bardeen-Cooper-Schrieffer superconductor.展开更多
The layered transition metal chalcogenides have been a fertile land in solid state physics for many decades. Various MX2-type transition metal dichalcogenides, such as WTe2, IrTe2, and MoS2, have triggered great atten...The layered transition metal chalcogenides have been a fertile land in solid state physics for many decades. Various MX2-type transition metal dichalcogenides, such as WTe2, IrTe2, and MoS2, have triggered great attention recently, either for the discovery of novel phenomena or some extreme or exotic physical properties, or for their potential applications. PdTe2 is a superconductor in the class of transition metal dichalcogenides, and superconductivity is enhanced in its Cu- intercalated form, Cuo.05PdTe2. It is important to study the electronic structures of PdTe2 and its intercalated form in order to explore for new phenomena and physical properties and understand the related superconductivity enhancement mecha- nism. Here we report systematic high resolution angle-resolved photoemission (ARPES) studies on PdTe2 and Cuo.05PdTe2 single crystals, combined with the band structure calculations. We present in detail for the first time the complex multi-band Fermi surface topology and densely-arranged band structure of these compounds. By carefully examining the electronic structures of the two systems, we find that Cu-intercalation in PdTe2 results in electron-doping, which causes the band structure to shift downwards by nearly 16 meV in Cuo.05PdTe2. Our results lay a foundation for further exploration and investigation on PdTe2 and related superconductors.展开更多
We predict that the recently discovered quasi-one-dimensional superconductors, A2 Cr3As3 (A=K, Rb), possess strong frustrated magnetic fluctuations and are nearby a novel in-out co-planar magnetic ground state. The ...We predict that the recently discovered quasi-one-dimensional superconductors, A2 Cr3As3 (A=K, Rb), possess strong frustrated magnetic fluctuations and are nearby a novel in-out co-planar magnetic ground state. The frustrated magnetism is very sensitive to the c-axis lattice constant and can thus be suppressed by increasing pressure. Our results qualitatively explain strong non-Fermi liquid behaviors observed in the normal state of the superconductors as the intertwining between the magnetism and superconductivity can create a large quantum critical region in quasi-one-dimensional systems and also suggest that the materials share similar phase diagrams and superconducting mechanism with other unconventional superconductors, such as cuprates and iron-based superconductors.展开更多
The crystal structure and the superconductivity for samples Mg(B1-xCx)2 (0〈 x 〈0.09) prepared by a hybrid microwave synthesis have been investigated. The starting material B10C is also obtained by using the micr...The crystal structure and the superconductivity for samples Mg(B1-xCx)2 (0〈 x 〈0.09) prepared by a hybrid microwave synthesis have been investigated. The starting material B10C is also obtained by using the microwave method. The carbon can distribute uniformly in the Mg(B1-xCx)2 samples because boron and carbon are mixed on an atomic scale in the staring material B10C. The dependences of both lattice parameters and superconducting transition temperature Tc on carbon content accord with those reported in the literature. The upper critical field He2 at 20 K can be enhanced from about 4.3 T for x = 0 to 10 T for x = 0.05. The critical current density Jc of Mg(B0.95 C0.05)2 is 1.05×10^4 A/cm^2 at 20 K and 1 T.展开更多
High-resolution angle-resolved photoemission measurements are carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7K. Combined with theoretical calculations, we discover for th...High-resolution angle-resolved photoemission measurements are carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7K. Combined with theoretical calculations, we discover for the first time the existence of topologically nontrivial surface state with Dirac cone in PbTe2 superconductor. It is located at the Brillouin zone center and possesses helical spin texture. Distinct from the usual three-dimensional topological insulators where the Dirac cone of the surface state lies at the Fermi level, the Dirac point of the surface state in PdTe2 lies deeply below the Fermi level at - 1.75 eV binding energy and is well separated from the bulk states. The identification of topological surface state in PdTe2 superconductor deeply below the Fermi level provides a unique system to explore new phenomena and properties and opens a door for finding new topological materials in transition metal ehalcogenides.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.12104016)the National Key Research and Development Program of China (Grant No.2020YFF01014706)。
文摘Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(CPR)and uncover many unconventional physical properties.In this article,we first report the discovery of half-integer Shapiro steps in MgB_(2)focused He ion beam(He-FIB)Josephson junctions.The half-integer steps'dependence on microwave frequency,temperature,microwave power,and magnetic field is also analyzed.We find that the existence of half-integer steps can be controlled by the magnetic field periodically,which is similar to that of high temperature superconductor(HTS)grain boundary junctions,and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed.As a consequence,we mainly attribute the physical origin of half-integer steps in MgB_(2)He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions'array.Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.
基金the Japan Society for the Promotion of Science(JSPS)KAKENHI Grant Number JP18F18714Cryogenic Station,Research Network and Facility Services Division,National Institute for Materials Science(NIMS),Japansupported by the ARC Linkage Project(LP200200689)。
文摘The development of superconducting joining technology for reacted magnesium diboride(MgB_(2))conductors remains a critical challenge for the advancement of cryogen-free MgB_(2)-based magnets for magnetic resonance imaging(MRI).Herein,the fabrication of superconducting joints using reacted carbon-doped multifilament MgB_(2)wires for MRI magnets is reported.To achieve successful superconducting joints,the powder-in-mold method was employed,which involved tuning the filament protection mechanism,the powder compaction pressure,and the heat treatment condition.The fabricated joints demonstrated clear superconducting-to-normal transitions in self-field,with effective magnetic field screening up to 0.5 T at 20 K.To evaluate the interface between one of the MgB_(2)filaments and the MgB_(2)bulk within the joint,serial sectioning was conducted for the first time in this type of superconducting joint.The serial sectioning revealed space formation at the interface,potentially caused by the volume shrinkage associated with the MgB_(2)formation or the combined effect of the volume shrinkage and the different thermal expansion coefficients of the MgB_(2)bulk,the filament,the mold,and the sealing material.These findings are expected to be pivotal in developing MgB_(2)superconducting joining technology for MRI magnet applications through interface engineering.
基金thankful for the support from the Australian Research Council(ARC)Linkage Project(LP200200689).
文摘Magnesium diboride(MgB_(2))magnets have the potential to be the next-generation liquid-helium-free magnet for magnetic resonance imaging(MRI)application due to their relatively high superconducting transition temperature,high current density and low raw material cost compared with current commercial niobium-titanium(Nb-Ti)magnets.A typical superconducting magnet includes several coils.To produce an ultra-stable magnetic field for imaging in MRI,a superconducting electromagnet operating in a persistent mode is crucial.Superconducting coils of the electromagnet in MRI are short-circuited to operate in the persistent mode by connecting coils with superconducting joints.Per-sistent joints have been demonstrated for in-situ and ex-situ wires of both mono-and multi-filamentary structures,made predominantly by PIT techniques similar to those used in wire production.To realise further engagement of MgB_(2)in MRI applications,enhancing the performance of MgB_(2)superconducting joints is essential.This literature review summarises research and development on MgB_(2)superconducting joining technology.
基金the support of the accelerator group and operators of KOMAC (KAERI (C.K.,J.S.))Project supported by the National Research Foundation (NRF)of Korea through a grant funded by the Korean Ministry of Science and ICT (Grant No.2021R1A2C2010925 (T.P.,Y.H.,J.S.))+2 种基金the Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (Grant Nos.NRF-2019R1F1A1055284 (J.M.L.,W.N.K.)and NRF2021R1I1A1A01043885 (S.G.J.,Y.H.))the National Natural Science Foundation of China (Grant Nos.12035019 (J.L.))the Chinese Scholarship Council (CSC)for fellowship support。
文摘We investigate the effect of ion irradiation on MgB_(2) thin films with small grains of approximately 122 nm and 140 nm.The flux pinning by grain boundaries is insignificant in the pristine MgB_(2) films due to good inter-grain connectivity,but is significantly improved after 120-keV Mn-ion irradiation.The scaling behavior of the flux pinning force density for the ion-irradiated MgB_(2) thin films with nanoscale grains demonstrates the predominance of pinning by grain boundaries,in contrast to the single-crystalline MgB_(2) films where normal point pinning was dominant after low-energy ion irradiation.These results suggest that irradiation-induced defects can accumulate near the grain boundaries in metallic MgB_(2) superconductors.
基金Project supported by the National Natural Science Foundation of China(Grant No.12175107)the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant Nos.NY219087 and NY220038)。
文摘Isotope effect on superconductive transition temperature(T_c)is an essential indicator to examine whether the mechanism of superconductors is conventional.Unconventional isotope effect of BiS_(2)-based superconductors has been previously reported in ambient-pressure tetragonal phase.However,to comprehensively ascertain the nature of superconductivity,the investigation of BiS_(2)-based system in high-pressure structure is highly desirable.In this work,we carried out the first-principles calculations of phonon spectra and superconductivity in high-pressure monoclinic phase of LaO_(0.5)F_(0.5)BiS_(2)with ^(32)S and ^(34)S,and observed that the corresponding isotope coefficient is 0.13≤α≤0.20.This value is much greater than that of BiS_(2)-based superconductors in ambient-pressure phase,but slightly smaller than that of conventional MgB_2.Taking into account the calculated T_(c) lower than experimental results,we finally conclude that the moderate phonon-mediated pairing plays a significant role in forming superconductivity of BiS_(2)-based system in high-pressure phase,moreover,the cooperative multiple paring interactions should also be considered.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2243300003)the National Natural Science Foundation of China(Grant No.12074041)the Fundamental Research Program of Shanxi Province,China(Grant No.202203021222228).The calculations were carried out with high performance computing cluster of Beijing Normal University in Zhuhai.
文摘We design two new layered indium halide compounds LaOInF_(2)and LaOInCl_(2)by means of first-principles calculations and evolutionary crystal structure prediction.We find both compounds crystallize in a tetragonal structure with P4/nmm space group and have indirect band gaps of 2.58 eV and 3.21 eV,respectively.By substituting O with F,both of them become metallic and superconducting at low temperature.The F-doping leads to strong electron-phonon coupling in the low-energy acoustic phonon modes which is mainly responsible for the induced superconductivity.The total electron-phonon coupling strength are 1.86 and 1.48,while the superconducting transition temperature(T_(c))are about 7.2 K and 6.5 K with 10%and 5%F doping for LaOInF_(2)and LaOInCl_(2),respectively.
基金This work was supported by the Australian Research Council (ARC) underGrant No. DP0557544.
文摘MgB2 is a relatively new superconductor; it has attracted great interest from superconductor researchers all over the world. Thorough investigations have been carried out to study the material fabrication, as well as to study the material and superconducting properties from a fundamental physics point of view. The University of Wollongong has played a very active role in this research and a leading role in the research on high critical current density and high critical magnetic fields. Our recent research on the improvement of critical current density and the upper critical magnetic field by carbon-based compound doping is reviewed in this paper.
基金Supported by the National Basic Research Program of China under Grant Nos 2015CB921303,2011CBA00100 and 2012CB821404the Strategic Priority Research Program(B) of Chinese Academy of Sciences under Grant Nos XDB07020100and XDB07020200the National Natural Science Foundation of China under Grant No 11174350
文摘We report on the single crystal growth and superconducting properties of PbTaSe2 with the non-centrosymmetric crystal structure. By using the chemicM vapor transport technique, centimeter-size single crystals are success- fully obtained. The measurement of temperature dependence of electricaJ resistivity p(T) in both normal and superconducting states indicates a quasi-two-dimensional electronic state in contrast to that of polycrystalline samples. Specific heat C(T) measurement reveals a bulk superconductivity with Tc ≈ 3.75K and a specific heat jump ratio of 1.42. All these results are in agreement with a moderately electron-phonon coupled, type-g Bardeen-Cooper-Schrieffer superconductor.
基金Project supported by the National Natural Science Foundation of China(Grant No.11190022)the National Basic Research Program of China(Grant Nos.2011CB921703 and 2011CBA00110)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB07020300)
文摘The layered transition metal chalcogenides have been a fertile land in solid state physics for many decades. Various MX2-type transition metal dichalcogenides, such as WTe2, IrTe2, and MoS2, have triggered great attention recently, either for the discovery of novel phenomena or some extreme or exotic physical properties, or for their potential applications. PdTe2 is a superconductor in the class of transition metal dichalcogenides, and superconductivity is enhanced in its Cu- intercalated form, Cuo.05PdTe2. It is important to study the electronic structures of PdTe2 and its intercalated form in order to explore for new phenomena and physical properties and understand the related superconductivity enhancement mecha- nism. Here we report systematic high resolution angle-resolved photoemission (ARPES) studies on PdTe2 and Cuo.05PdTe2 single crystals, combined with the band structure calculations. We present in detail for the first time the complex multi-band Fermi surface topology and densely-arranged band structure of these compounds. By carefully examining the electronic structures of the two systems, we find that Cu-intercalation in PdTe2 results in electron-doping, which causes the band structure to shift downwards by nearly 16 meV in Cuo.05PdTe2. Our results lay a foundation for further exploration and investigation on PdTe2 and related superconductors.
基金Supported by the National Basic Research Program of China under Grant Nos 2010CB922904,2012CV821400 and2015CB921300the National Natural Science Foundation of China under Grant Nos 1190024,11175248 and 11104339the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No XDB07000000
文摘We predict that the recently discovered quasi-one-dimensional superconductors, A2 Cr3As3 (A=K, Rb), possess strong frustrated magnetic fluctuations and are nearby a novel in-out co-planar magnetic ground state. The frustrated magnetism is very sensitive to the c-axis lattice constant and can thus be suppressed by increasing pressure. Our results qualitatively explain strong non-Fermi liquid behaviors observed in the normal state of the superconductors as the intertwining between the magnetism and superconductivity can create a large quantum critical region in quasi-one-dimensional systems and also suggest that the materials share similar phase diagrams and superconducting mechanism with other unconventional superconductors, such as cuprates and iron-based superconductors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos20271052 and 20571083)the National Basic Research Program of China(Grant No2006CB601004)
文摘The crystal structure and the superconductivity for samples Mg(B1-xCx)2 (0〈 x 〈0.09) prepared by a hybrid microwave synthesis have been investigated. The starting material B10C is also obtained by using the microwave method. The carbon can distribute uniformly in the Mg(B1-xCx)2 samples because boron and carbon are mixed on an atomic scale in the staring material B10C. The dependences of both lattice parameters and superconducting transition temperature Tc on carbon content accord with those reported in the literature. The upper critical field He2 at 20 K can be enhanced from about 4.3 T for x = 0 to 10 T for x = 0.05. The critical current density Jc of Mg(B0.95 C0.05)2 is 1.05×10^4 A/cm^2 at 20 K and 1 T.
基金the National Natural Science Foundation of China under Grant Nos 11190022,11274359 and 11422428the National Basic Research Program of China under Grant Nos 2011CB921703,2011CBA00110,2011CBA00108 and 2013CB921700the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant Nos XDB07020300 and XDB07020100
文摘High-resolution angle-resolved photoemission measurements are carried out on transition metal dichalcogenide PdTe2 that is a superconductor with a Tc at 1.7K. Combined with theoretical calculations, we discover for the first time the existence of topologically nontrivial surface state with Dirac cone in PbTe2 superconductor. It is located at the Brillouin zone center and possesses helical spin texture. Distinct from the usual three-dimensional topological insulators where the Dirac cone of the surface state lies at the Fermi level, the Dirac point of the surface state in PdTe2 lies deeply below the Fermi level at - 1.75 eV binding energy and is well separated from the bulk states. The identification of topological surface state in PdTe2 superconductor deeply below the Fermi level provides a unique system to explore new phenomena and properties and opens a door for finding new topological materials in transition metal ehalcogenides.