Herein, three kinds of Li2CO3 and two kinds of MgCO3·3H2O crystals are easily synthesized in a homogeneouslike organic phase. The morphology and size of synthesized crystals are controllable and adjustable in the...Herein, three kinds of Li2CO3 and two kinds of MgCO3·3H2O crystals are easily synthesized in a homogeneouslike organic phase. The morphology and size of synthesized crystals are controllable and adjustable in the single organic phase, with the morphology of Li2CO3 ranging from micro-flaky, flower to nanobranch, MgCO3·3H2O rangi ng from nanosphere to nanorod. Compared with coupled reacti on and solve nt extraction process, of which the crystallization process occurred in the interface of two phase, our proposed method made it possible that the crystallization process occurred in the single organic phase, which resulted in better crystal morphology. Moreover, the formation mechanism of different crystal morphologies is discussed, the results showed that the crystals in micron size and nano size are involved in two crystallization mechanism, the micron particles in the form of flake and flower-like is a typical radial growth, which means that the growth occurs by diffusion around a nucleus as starting point, while the reaction model for small particles should be similar to a water-in-oil structure. As the reaction carried out, the crystal should be restricted in a constrained organic structure.展开更多
P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phas...P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.展开更多
基金Supported by the National Natural Science Foundation of China(U1607118)
文摘Herein, three kinds of Li2CO3 and two kinds of MgCO3·3H2O crystals are easily synthesized in a homogeneouslike organic phase. The morphology and size of synthesized crystals are controllable and adjustable in the single organic phase, with the morphology of Li2CO3 ranging from micro-flaky, flower to nanobranch, MgCO3·3H2O rangi ng from nanosphere to nanorod. Compared with coupled reacti on and solve nt extraction process, of which the crystallization process occurred in the interface of two phase, our proposed method made it possible that the crystallization process occurred in the single organic phase, which resulted in better crystal morphology. Moreover, the formation mechanism of different crystal morphologies is discussed, the results showed that the crystals in micron size and nano size are involved in two crystallization mechanism, the micron particles in the form of flake and flower-like is a typical radial growth, which means that the growth occurs by diffusion around a nucleus as starting point, while the reaction model for small particles should be similar to a water-in-oil structure. As the reaction carried out, the crystal should be restricted in a constrained organic structure.
基金supported by the National Natural Science Foundation of China (22169002)the Chongzuo Key Research and Development Program of China (20220603)the Counterpart Aid Project for Discipline Construction from Guangxi University(2023M02)
文摘P2/O3-type Ni/Mn-based layered oxides are promising cathode materials for sodium-ion batteries(SIBs)owing to their high energy density.However,exploring effective ways to enhance the synergy between the P2 and 03 phases remains a necessity.Herein,we design a P2/O3-type Na_(0.76)Ni_(0.31)Zn_(0.07)Mn_(0.50)Ti_(0.12)0_(2)(NNZMT)with high chemical/electrochemical stability by enhancing the coupling between the two phases.For the first time,a unique Na*extraction is observed from a Na-rich O3 phase by a Na-poor P2 phase and systematically investigated.This process is facilitated by Zn^(2+)/Ti^(4+)dual doping and calcination condition regulation,allowing a higher Na*content in the P2 phase with larger Na^(+)transport channels and enhancing Na transport kinetics.Because of reduced Na^(+)in the O3 phase,which increases the difficulty of H^(+)/Na^(+) exchange,the hydrostability of the O3 phase in NNZMT is considerably improved.Furthermore,Zn^(2+)/Ti^(4+)presence in NNZMT synergistically regulates oxygen redox chemistry,which effectively suppresses O_(2)/CO_(2) gas release and electrolyte decomposition,and completely inhibits phase transitions above 4.0 V.As a result,NNZMT achieves a high discharge capacity of 144.8 mA h g^(-1) with a median voltage of 3.42 V at 20 mA g^(-1) and exhibits excellent cycling performance with a capacity retention of 77.3% for 1000 cycles at 2000 mA g^(-1).This study provides an effective strategy and new insights into the design of high-performance layered-oxide cathode materials with enhanced structure/interface stability forSIBs.