1 Introduction The brines with high concentrations of magnesium and boron resources are widely distributed in the Qaidam Basin of the Qinghai-Tibet plateau,China(Zheng&Tang,1988).Although some works on the ternary...1 Introduction The brines with high concentrations of magnesium and boron resources are widely distributed in the Qaidam Basin of the Qinghai-Tibet plateau,China(Zheng&Tang,1988).Although some works on the ternary system展开更多
Salt lake brine is a complex salt-water system under natural environment.Although many models can express the thermodynamic properties and phase equilibrium of electrolyte aqueous solution,the multi-temperature charac...Salt lake brine is a complex salt-water system under natural environment.Although many models can express the thermodynamic properties and phase equilibrium of electrolyte aqueous solution,the multi-temperature characteristics and predictability are still the goals of model development.In this study,a comprehensive thermodynamic model system is re-established based on the eNRTL model and some improvements:(1) new expression of long-range electrostatic term with symmetrical reference state is proposed to handle the electrolyte solution covering entire concentration range;(2) the temperature dependence of the binary interaction parameters is formulated with a Gibbs Helmholtz expression containing three temperature coefficients,the liquid parameters,which associated with Gibbs energy,enthalpy,and heat capacity contribution;and(3) liquid parameters and solid species data are regressed from properties and solubility data at full temperature range.Together the activity coefficient model,property models and parameters of liquid and solid offer a comprehensive thermodynamic model system for the typical bittern of MgCl2-CaCl2-H2 O binary and ternary systems,and it shows excellent agreement with the literature data for the ternary and binary systems.The successful prediction of complete phase diagram of ternary system shows that the model has the ability to deal with high concentration and high non-idealitv system,and the ability to extrapolate the temperature.展开更多
基金Financial supports from the National Natural Science Foundation of China (21276194 and 21306136)Key Laboratory of Salt Lake Resources and Chemistry at Chinese Academy Sciences (KLSLRC-KF-13-HX-2)Tianjin Key Laboratory of Marine Resources and Chemistry (201206)
文摘1 Introduction The brines with high concentrations of magnesium and boron resources are widely distributed in the Qaidam Basin of the Qinghai-Tibet plateau,China(Zheng&Tang,1988).Although some works on the ternary system
基金financial support of the National Natural Science Foundation of China(U1407204,U1707602)the Yangtze Scholars and Innovative Research Team in University of Education of China+1 种基金the Innovative Research Team of Tianjin Municipal Education Commission(TD12-5004)Foundation of Tianjin Key Laboratory of Marine Resources and Chemistry(201602)。
文摘Salt lake brine is a complex salt-water system under natural environment.Although many models can express the thermodynamic properties and phase equilibrium of electrolyte aqueous solution,the multi-temperature characteristics and predictability are still the goals of model development.In this study,a comprehensive thermodynamic model system is re-established based on the eNRTL model and some improvements:(1) new expression of long-range electrostatic term with symmetrical reference state is proposed to handle the electrolyte solution covering entire concentration range;(2) the temperature dependence of the binary interaction parameters is formulated with a Gibbs Helmholtz expression containing three temperature coefficients,the liquid parameters,which associated with Gibbs energy,enthalpy,and heat capacity contribution;and(3) liquid parameters and solid species data are regressed from properties and solubility data at full temperature range.Together the activity coefficient model,property models and parameters of liquid and solid offer a comprehensive thermodynamic model system for the typical bittern of MgCl2-CaCl2-H2 O binary and ternary systems,and it shows excellent agreement with the literature data for the ternary and binary systems.The successful prediction of complete phase diagram of ternary system shows that the model has the ability to deal with high concentration and high non-idealitv system,and the ability to extrapolate the temperature.