We report a double Q-switched 946 nm laser with a magnesium-oxide-doped LiNbO3 (MgO:LN) electro-optic (EO) crystal and a monolayer molybdenum diselenide (MoSe2) saturable absorber (SA). A pulsed laser diode s...We report a double Q-switched 946 nm laser with a magnesium-oxide-doped LiNbO3 (MgO:LN) electro-optic (EO) crystal and a monolayer molybdenum diselenide (MoSe2) saturable absorber (SA). A pulsed laser diode side-pumped long neodymium-doped yttrium aluminum garnet rod (φ3×65 mm) is used as the gain medium. Large pulse energy up to 3.15 mJ and peak power up to 346 kW are generated at the repetition rate of 550 Hz, corresponding to the beam quality factors of Mx^2=3.849, My^2=3.868. Monolayer MoSe2 nanosheets applied in the experiment would be a promising SA for a passive Q-switching operation.展开更多
基金supported by the National Natural Science Foundation of China(No.61205114)the Science & Technology Coordinator Innovation Plan Project of the Shaanxi Province(No.2011KTCL01-06)the Key Laboratory Project of Shaanxi(No.2010JS112)
文摘We report a double Q-switched 946 nm laser with a magnesium-oxide-doped LiNbO3 (MgO:LN) electro-optic (EO) crystal and a monolayer molybdenum diselenide (MoSe2) saturable absorber (SA). A pulsed laser diode side-pumped long neodymium-doped yttrium aluminum garnet rod (φ3×65 mm) is used as the gain medium. Large pulse energy up to 3.15 mJ and peak power up to 346 kW are generated at the repetition rate of 550 Hz, corresponding to the beam quality factors of Mx^2=3.849, My^2=3.868. Monolayer MoSe2 nanosheets applied in the experiment would be a promising SA for a passive Q-switching operation.