Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals has proven to be challenging. Here, pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals were prepared. Furthermore, a new magnesium titanate, Mg1.2Ti1.8O5, was ...Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals has proven to be challenging. Here, pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals were prepared. Furthermore, a new magnesium titanate, Mg1.2Ti1.8O5, was synthesized via a solution-based route for the first time. As hydrogen evolution photocatalysts, both pure phase Mg1.2TiLsO5 and MgTiO3 nanocrystals exhibit excellent hydrogen production efficiency. In comparison with pure MgTiO3 nanocrystals, the asprepared Mg1.2Ti1.8O5 nanocrystals exhibited four times as much photocatalytic hydrogen production activity, up to 40 μmol.h-1 Photoelectrochemical analysis, including linear sweep voltammetry, transient photocurrent measurement, electrochemical impedance spectroscopy, and construction of Mott-Schottky plots, demonstrated that the enhanced photocatalytic activity was attributed to the large surface area, fast photoelectron transfer, higher carrier density, and efficient charge separation of the Mg1.2Ti1.8O5 nanocrystals.展开更多
An effective photocatalytic hydrogen production catalyst comprising MgTiO3/ MgTi2O5/TiO2 heterogeneous belt-junctions was prepared using magnesium ions by a thermally driven doping method. The tri-phase heterogeneous ...An effective photocatalytic hydrogen production catalyst comprising MgTiO3/ MgTi2O5/TiO2 heterogeneous belt-junctions was prepared using magnesium ions by a thermally driven doping method. The tri-phase heterogeneous junction was confirmed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). The as-prepared MgTiOg/MgTi2OJ TiO2 heterojunctions exhibited a very high photocatalytic hydrogen production activity (356.1 mol·g0.1mgcat·h^-1) and an apparent quantum efficiency (50.69% at 365 nm) that is about twice of that of bare TiO2 nanobelts (189.4mol·g0.1mgcat·h^-1). Linear sweep voltage and transient photocurrent characterization as well as analysis of the electrochemical impedance spectra and Mott-Schottky plots revealed that the high photocatalytic performance is caused by the one-dimensional structure, which imparts excellent charge transportation characteristic, and the MgTiO3/MgTi2O5/TiO2 tri-phase heterojunction, which effectively drives the charge separation through the inherent electric field. This titanate-based tri-phase heterogeneous junction photocatalyst further enriches the catalyst system for photocatalytic hydrogen production.展开更多
基金The Science and Technology Innovative Research Team of Zhejiang Province(2009R50010)The Zhejiang Science and Technology Innovation Projects for Students(2009R409014)
基金This work was supported by the National Natural Sdence Foundation of China (Nos. 21171052, 21471050, 21501052 and 21473051), the Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-11-0959), the China Postdoctoral Science Foundation (No. 2015M570304), the Postdoctoral Science Foundation of Heilongjiang Province (No. LBH-Q11009), Program for Innovative Research Team in University (No. IRT-1237), Heilongjiang Province Natural Science Foundation of Key Projects (No. ZD201301), Heilongjiang Province Natural Science Foundation Youth Fund (No. QC2015010) and Harbin Technological Innovation Talent of Special Funds (No. RC2013QN017028).
文摘Synthesis of pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals has proven to be challenging. Here, pure phase Mg1.2Ti1.8O5 and MgTiO3 nanocrystals were prepared. Furthermore, a new magnesium titanate, Mg1.2Ti1.8O5, was synthesized via a solution-based route for the first time. As hydrogen evolution photocatalysts, both pure phase Mg1.2TiLsO5 and MgTiO3 nanocrystals exhibit excellent hydrogen production efficiency. In comparison with pure MgTiO3 nanocrystals, the asprepared Mg1.2Ti1.8O5 nanocrystals exhibited four times as much photocatalytic hydrogen production activity, up to 40 μmol.h-1 Photoelectrochemical analysis, including linear sweep voltammetry, transient photocurrent measurement, electrochemical impedance spectroscopy, and construction of Mott-Schottky plots, demonstrated that the enhanced photocatalytic activity was attributed to the large surface area, fast photoelectron transfer, higher carrier density, and efficient charge separation of the Mg1.2Ti1.8O5 nanocrystals.
基金Acknowledgements This work was supported by the National Natural Sdence Foundation of China (Nos. 21471050, 21501052 and 21473051), the China Postdoctoral Science Foundation (No. 2015M570304), the Postdoctoral Science Foundation of Heilongjiang Province (Nos. LBH-Ql1009 and LBH-TZ06019), Heilongjiang Province Natural Science Foundation (Nos. ZD201301 and QC2015010), and Harbin Technological Innovation Talent of Special Funds (No. RC2013QN017028).
文摘An effective photocatalytic hydrogen production catalyst comprising MgTiO3/ MgTi2O5/TiO2 heterogeneous belt-junctions was prepared using magnesium ions by a thermally driven doping method. The tri-phase heterogeneous junction was confirmed by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). The as-prepared MgTiOg/MgTi2OJ TiO2 heterojunctions exhibited a very high photocatalytic hydrogen production activity (356.1 mol·g0.1mgcat·h^-1) and an apparent quantum efficiency (50.69% at 365 nm) that is about twice of that of bare TiO2 nanobelts (189.4mol·g0.1mgcat·h^-1). Linear sweep voltage and transient photocurrent characterization as well as analysis of the electrochemical impedance spectra and Mott-Schottky plots revealed that the high photocatalytic performance is caused by the one-dimensional structure, which imparts excellent charge transportation characteristic, and the MgTiO3/MgTi2O5/TiO2 tri-phase heterojunction, which effectively drives the charge separation through the inherent electric field. This titanate-based tri-phase heterogeneous junction photocatalyst further enriches the catalyst system for photocatalytic hydrogen production.
基金The project was supported by the National Natural Science Foundation of China(50971112,51001043)Scientific Research Projects in Colleges and Universities in Hebei Province,China(ZD2014004)~~