MgTiO3 precursor was mechanochemically synthesized by high-energy ball milling of MgO and TiO2 . The sinteting characteristic of the resulted MgTiO3 precursor was investigated. The experirneatal resalts indicate that...MgTiO3 precursor was mechanochemically synthesized by high-energy ball milling of MgO and TiO2 . The sinteting characteristic of the resulted MgTiO3 precursor was investigated. The experirneatal resalts indicate that particles of both MgO and TiO2 powders become smaller rapidly, and then the costalline structures of MgO and TiO2 change significantly. MgTiO3 was observed by XRD after 30 hours of ball milling. Strong diffraction peaks of MgTiO3 were observed after 50 hours of ball milling. HRTEM observation proves that dense MgTiO3 ceramics with a compact crystalline structure can be sintered from rnechanochemically activated MgTiO3 precursor, the volume density of the resulting ceramie is as high aa 95% of the theoretical density, the porosity and average pore diameter of the ceramic are measured as 4.95% and 50 nm respectively, and the transverse strength exceeded 500 MPa.展开更多
The B2O3-doped MgTiO3 powders and ceramics have been prepared by sol-gel method using Mg(NO3)2-6H2O, Ti(C4H9O)4 and H3BO3 as the starting materials. The sintering behavior and microwave dielectric properties of ce...The B2O3-doped MgTiO3 powders and ceramics have been prepared by sol-gel method using Mg(NO3)2-6H2O, Ti(C4H9O)4 and H3BO3 as the starting materials. The sintering behavior and microwave dielectric properties of ceramics prepared from powders with different particle sizes were investigated. The gels were calcined at 650, 700, 750, 800, 850 and 900 ℃ and the derived particle sizes of powders were 20-30 nm, 30-40 nm, 40-60 nm, 60-90 nm, 90-120 nm and 120-150 nm, respectively. The nanoparticles with the size of 30-60 nm benefited the sintering process with high surface energy whereas nanoparticles with the size of 20-30 nm damaged the microwave dielectric properties due to the pores in the ceramics. The addition of B203 used as a liquid sintering aid reduced the sintering temperature of MgTiO3 ceramic, which was supposed to enter the MgTi03 lattice and resulted in the formation of (MgTi)2(BO3)O phase. The B203-doped MgTiO3 ceramic sintered at 1100℃ and prepared from the nanoparticles of 40-60 nm had compact structure and exhibited good microwave dielectric properties: εr=17.63, Q x f=33,768 GHz and Tf=-48X 10-6 ℃-1.展开更多
文摘MgTiO3 precursor was mechanochemically synthesized by high-energy ball milling of MgO and TiO2 . The sinteting characteristic of the resulted MgTiO3 precursor was investigated. The experirneatal resalts indicate that particles of both MgO and TiO2 powders become smaller rapidly, and then the costalline structures of MgO and TiO2 change significantly. MgTiO3 was observed by XRD after 30 hours of ball milling. Strong diffraction peaks of MgTiO3 were observed after 50 hours of ball milling. HRTEM observation proves that dense MgTiO3 ceramics with a compact crystalline structure can be sintered from rnechanochemically activated MgTiO3 precursor, the volume density of the resulting ceramie is as high aa 95% of the theoretical density, the porosity and average pore diameter of the ceramic are measured as 4.95% and 50 nm respectively, and the transverse strength exceeded 500 MPa.
基金supported by Project of New Century Excellent Talents in University (No. NCET-07-0786)the Science and Technology Innovative Research Team of Zhejiang Province (No. 2009R50010)the Zhejiang Science and Technology Innovation Projects for students (No. 2009R409014)
文摘The B2O3-doped MgTiO3 powders and ceramics have been prepared by sol-gel method using Mg(NO3)2-6H2O, Ti(C4H9O)4 and H3BO3 as the starting materials. The sintering behavior and microwave dielectric properties of ceramics prepared from powders with different particle sizes were investigated. The gels were calcined at 650, 700, 750, 800, 850 and 900 ℃ and the derived particle sizes of powders were 20-30 nm, 30-40 nm, 40-60 nm, 60-90 nm, 90-120 nm and 120-150 nm, respectively. The nanoparticles with the size of 30-60 nm benefited the sintering process with high surface energy whereas nanoparticles with the size of 20-30 nm damaged the microwave dielectric properties due to the pores in the ceramics. The addition of B203 used as a liquid sintering aid reduced the sintering temperature of MgTiO3 ceramic, which was supposed to enter the MgTi03 lattice and resulted in the formation of (MgTi)2(BO3)O phase. The B203-doped MgTiO3 ceramic sintered at 1100℃ and prepared from the nanoparticles of 40-60 nm had compact structure and exhibited good microwave dielectric properties: εr=17.63, Q x f=33,768 GHz and Tf=-48X 10-6 ℃-1.