This article explores the effects of doping ferroelectric materials MgTiO_(3) with different proportions on the properties of polyaniline(PANI).PANI/MgTiO_(3) composites were prepared by in-situ composite method.Fouri...This article explores the effects of doping ferroelectric materials MgTiO_(3) with different proportions on the properties of polyaniline(PANI).PANI/MgTiO_(3) composites were prepared by in-situ composite method.Fourier transform infrared spectroscopy(FTIR)and X-ray diffraction(XRD)were used to characterize the structure of the composites.Scanning electron microscope(SEM)was used to characterize the morphology of the composites.The thermal stability of the composites was investigated by thermogravimetry(TG)and derivative thermogravimetry(DTG).Electrochemical methods(cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS),and constant current charge-discharge test)were used to compare and analyze the electrochemical performance of the composites.TG-DTG analysis and electrochemical experiments all show that the thermal stability and electrochemical properties of the PANI/MgTiO_(3) composite with a mass ratio of 82/18(w/w)are the best.The results indicate that there is a synergistic effect between PANI and MgTiO_(3),which improves the performances of the PANI when the appropriate amount of MgTiO_(3) is added.展开更多
Hydroxyapatite-magnesium titanate composite nanopowders have been developed using a mechanothermal process.Thermal treatment of the milled powders at 700℃resulted in the formation of HAp/MgTiO_(3)-MgO nanocomposite.X...Hydroxyapatite-magnesium titanate composite nanopowders have been developed using a mechanothermal process.Thermal treatment of the milled powders at 700℃resulted in the formation of HAp/MgTiO_(3)-MgO nanocomposite.X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and energy dispersive X-ray spectroscopy(EDX)techniques were utilized to characterize the synthesized powders.The results revealed that the dominant phases after mechanical activation were hydroxyapatite,anatase(TiO_(2))and periclase(MgO);while after thermal annealing process at 700℃,hydroxyapatite along with geikielite(MgTiO_(3))and periclase(MgO)were the major phases.Based on the XRD analysis,the evaluation of structural features of the samples indicated that the average crystallite sizes of hydroxyapatite after 10 h of milling and subsequent thermal treatment at 700℃were about 21 nm and 34 nm,respectively.Microscopic observations illustrated that the synthesized powders contained large agglomerates which consisted of significantly finer particles with spheroidal morphology.It is concluded that the mechanothermal method can be used to produce hydroxyapatite-based nanocomposite with appropriate structural and morphological features.展开更多
基金Funded by the Natural Science Foundation of Liaoning Province(No.20180550736)Research Foundation of Educational Committee of Liaoning Province(No.JDL2019004)Guangxi Key Laboratory of Information Materials(Guilin University of Electronic Technology)(No.191008-K)。
文摘This article explores the effects of doping ferroelectric materials MgTiO_(3) with different proportions on the properties of polyaniline(PANI).PANI/MgTiO_(3) composites were prepared by in-situ composite method.Fourier transform infrared spectroscopy(FTIR)and X-ray diffraction(XRD)were used to characterize the structure of the composites.Scanning electron microscope(SEM)was used to characterize the morphology of the composites.The thermal stability of the composites was investigated by thermogravimetry(TG)and derivative thermogravimetry(DTG).Electrochemical methods(cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS),and constant current charge-discharge test)were used to compare and analyze the electrochemical performance of the composites.TG-DTG analysis and electrochemical experiments all show that the thermal stability and electrochemical properties of the PANI/MgTiO_(3) composite with a mass ratio of 82/18(w/w)are the best.The results indicate that there is a synergistic effect between PANI and MgTiO_(3),which improves the performances of the PANI when the appropriate amount of MgTiO_(3) is added.
基金The Science and Technology Innovative Research Team of Zhejiang Province(2009R50010)The Zhejiang Science and Technology Innovation Projects for Students(2009R409014)
基金research affairs of Islamic Azad University,Najafabad Branch,for supporting this research.
文摘Hydroxyapatite-magnesium titanate composite nanopowders have been developed using a mechanothermal process.Thermal treatment of the milled powders at 700℃resulted in the formation of HAp/MgTiO_(3)-MgO nanocomposite.X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and energy dispersive X-ray spectroscopy(EDX)techniques were utilized to characterize the synthesized powders.The results revealed that the dominant phases after mechanical activation were hydroxyapatite,anatase(TiO_(2))and periclase(MgO);while after thermal annealing process at 700℃,hydroxyapatite along with geikielite(MgTiO_(3))and periclase(MgO)were the major phases.Based on the XRD analysis,the evaluation of structural features of the samples indicated that the average crystallite sizes of hydroxyapatite after 10 h of milling and subsequent thermal treatment at 700℃were about 21 nm and 34 nm,respectively.Microscopic observations illustrated that the synthesized powders contained large agglomerates which consisted of significantly finer particles with spheroidal morphology.It is concluded that the mechanothermal method can be used to produce hydroxyapatite-based nanocomposite with appropriate structural and morphological features.