A solid-state storage system is the most practical option for hydrogen because it is more convenient and safer.Metal hydrides,especially MgH_(2),are the most promising materials that offer high gravimetric capacity an...A solid-state storage system is the most practical option for hydrogen because it is more convenient and safer.Metal hydrides,especially MgH_(2),are the most promising materials that offer high gravimetric capacity and good reversibility.However,the practical application of MgH_(2) is restricted by slow sorption kinetics and high stability of thermodynamic properties.Hydrogen storage performance of MgH_(2) was enhanced by introducing the Mg–Na–Al system that destabilises MgH_(2) with NaAlH_(4).The Mg–Na–Al system has superior performance compared to that of unary MgH_(2) and NaAlH_(4).To boost the performance of the Mg–Na–Al system,the ball milling method and the addition of a catalyst were introduced.The Mg–Na–Al system resulted in a low onset decomposition temperature,superior cyclability and enhanced kinetics performances.The Al_(12)Mg_(17) and NaMgH_(3) that formed in situ during the dehydrogenation process modify the reaction pathway of the Mg–Na–Al system and alter the thermodynamic properties.In this paper,the overview of the recent progress in hydrogen storage of the Mg–Na–Al system is detailed.The remaining challenges and future development of Mg–Na–Al system are also discussed.This paper is the first review report on hydrogen storage properties of the Mg–Na–Al system.展开更多
基金This work was supported by the Ministry of Higher Education Malaysia through the Fundamental Research Grant Scheme(FRGS/1/2019/STG07/UMT/02/5)The authors also thank the Universiti Malaysia Terengganu for providing the facilities to carry out this project.Scheme(FRGS/1/2019/STG07/UMT/02/5)The authors also thank the Universiti Malaysia Terengganu for providing the facilities to carry out this project.
文摘A solid-state storage system is the most practical option for hydrogen because it is more convenient and safer.Metal hydrides,especially MgH_(2),are the most promising materials that offer high gravimetric capacity and good reversibility.However,the practical application of MgH_(2) is restricted by slow sorption kinetics and high stability of thermodynamic properties.Hydrogen storage performance of MgH_(2) was enhanced by introducing the Mg–Na–Al system that destabilises MgH_(2) with NaAlH_(4).The Mg–Na–Al system has superior performance compared to that of unary MgH_(2) and NaAlH_(4).To boost the performance of the Mg–Na–Al system,the ball milling method and the addition of a catalyst were introduced.The Mg–Na–Al system resulted in a low onset decomposition temperature,superior cyclability and enhanced kinetics performances.The Al_(12)Mg_(17) and NaMgH_(3) that formed in situ during the dehydrogenation process modify the reaction pathway of the Mg–Na–Al system and alter the thermodynamic properties.In this paper,the overview of the recent progress in hydrogen storage of the Mg–Na–Al system is detailed.The remaining challenges and future development of Mg–Na–Al system are also discussed.This paper is the first review report on hydrogen storage properties of the Mg–Na–Al system.