用氢化燃烧法合成Mg2-xAgxNi(x=0.05,0.1,0.2,0.5)和Mg2-xAlxNi(x=0,0.1,0.2,0.5)。PCT结果说明合成的Mg Ni Ag和Mg Ni Al储氢合金材料具有很高的活性和理想的储氢性能。对两个体系的PCT结果分别进行计算,得出温度和氢平衡压的关系式。...用氢化燃烧法合成Mg2-xAgxNi(x=0.05,0.1,0.2,0.5)和Mg2-xAlxNi(x=0,0.1,0.2,0.5)。PCT结果说明合成的Mg Ni Ag和Mg Ni Al储氢合金材料具有很高的活性和理想的储氢性能。对两个体系的PCT结果分别进行计算,得出温度和氢平衡压的关系式。在423K时Mg1.8Ag0.2Ni在5min之内的放氢量为2.14%/min(质量分数);Mg1.5Al0.5Ni在α+β相区的吸氢速率为4.88%/min(质量分数),放氢速率为1.26%/min(质量分数)。用XRD方法进行物相分析表明:添加少量银没有改变Mg2Ni的结构;添加铝却改变了Mg2Ni的结构,使储氢合金材料的储放氢动力学性能均得到改善。展开更多
采用固溶烧结法制备了Mg_2Ni_(1-x)Co_x(x=0.10,0.15,0.20)合金,利用X射线衍射仪和压力-组成-温度测试仪等研究了Co含量对合金相结构和储氢性能的影响.结果表明,合金由Mg_2Ni型Mg_2(Ni,Co)主相及少量Mg和Mg Ni3Co新相组成.Mg2(Ni,Co)具...采用固溶烧结法制备了Mg_2Ni_(1-x)Co_x(x=0.10,0.15,0.20)合金,利用X射线衍射仪和压力-组成-温度测试仪等研究了Co含量对合金相结构和储氢性能的影响.结果表明,合金由Mg_2Ni型Mg_2(Ni,Co)主相及少量Mg和Mg Ni3Co新相组成.Mg2(Ni,Co)具有良好的可逆储氢性能,吸氢形成Mg_2Ni_(0.9)Co_(0.1)H_4型四元氢化物,其具有与父系氢化物HT-Mg_2NiH_4相近的放氢焓变(ΔHd=63.9 k J/mol H2).Mg_2Ni_(1-x)Co_x(x=0.10,0.15,0.20)合金具有良好的放氢动力学性能,二维相界面迁移为放氢过程的控制步骤.随着Co含量的增加,合金的放氢活化能(Ea)降低,其中,Mg_2Ni_(0.8)Co_(0.2)的Ea降低到54.0 k J/mol.展开更多
文摘用氢化燃烧法合成Mg2-xAgxNi(x=0.05,0.1,0.2,0.5)和Mg2-xAlxNi(x=0,0.1,0.2,0.5)。PCT结果说明合成的Mg Ni Ag和Mg Ni Al储氢合金材料具有很高的活性和理想的储氢性能。对两个体系的PCT结果分别进行计算,得出温度和氢平衡压的关系式。在423K时Mg1.8Ag0.2Ni在5min之内的放氢量为2.14%/min(质量分数);Mg1.5Al0.5Ni在α+β相区的吸氢速率为4.88%/min(质量分数),放氢速率为1.26%/min(质量分数)。用XRD方法进行物相分析表明:添加少量银没有改变Mg2Ni的结构;添加铝却改变了Mg2Ni的结构,使储氢合金材料的储放氢动力学性能均得到改善。
文摘采用固溶烧结法制备了Mg_2Ni_(1-x)Co_x(x=0.10,0.15,0.20)合金,利用X射线衍射仪和压力-组成-温度测试仪等研究了Co含量对合金相结构和储氢性能的影响.结果表明,合金由Mg_2Ni型Mg_2(Ni,Co)主相及少量Mg和Mg Ni3Co新相组成.Mg2(Ni,Co)具有良好的可逆储氢性能,吸氢形成Mg_2Ni_(0.9)Co_(0.1)H_4型四元氢化物,其具有与父系氢化物HT-Mg_2NiH_4相近的放氢焓变(ΔHd=63.9 k J/mol H2).Mg_2Ni_(1-x)Co_x(x=0.10,0.15,0.20)合金具有良好的放氢动力学性能,二维相界面迁移为放氢过程的控制步骤.随着Co含量的增加,合金的放氢活化能(Ea)降低,其中,Mg_2Ni_(0.8)Co_(0.2)的Ea降低到54.0 k J/mol.