文章旨在介绍一种基于Go语言中的Gin和GORM框架开发的通用管理信息系统(Management Information System,MIS)的设计与实现。MIS系统在各种组织中发挥着关键作用,用于处理、管理和分析各种信息,通过Gin和GORM这两个流行的开源框架,可以...文章旨在介绍一种基于Go语言中的Gin和GORM框架开发的通用管理信息系统(Management Information System,MIS)的设计与实现。MIS系统在各种组织中发挥着关键作用,用于处理、管理和分析各种信息,通过Gin和GORM这两个流行的开源框架,可以快速搭建一个稳定、高效的MIS系统,以满足企业管理信息系统的需求,并提供友好的用户界面和可靠的数据管理。该方案可针对不同的业务需求进行快速定制和扩展功能,具有高度可扩展性和灵活性。展开更多
Underground constructions often encounter water environments,where water–rock interaction can increase porosity,thereby weakening engineering rocks.Correspondingly,the failure criterion for chemically corroded rocks ...Underground constructions often encounter water environments,where water–rock interaction can increase porosity,thereby weakening engineering rocks.Correspondingly,the failure criterion for chemically corroded rocks becomes essential in the stability analysis and design of such structures.This study enhances the applicability of the Hoek-Brown(H-B)criterion for engineering structures operating in chemically corrosive conditions by introducing a kinetic porosity-dependent instantaneous mi(KPIM).A multiscale experimental investigation,including nuclear magnetic resonance(NMR),X-ray diffraction(XRD),scanning electron microscopy(SEM),pH and ion chromatography analysis,and triaxial compression tests,is employed to quantify pore structural changes and their linkage with the strength responses of limestone under coupled chemical-mechanical(C-M)conditions.By employing ion chromatography and NMR analysis,along with incorporating the principles of free-face dissolution theory accounting for both congruent and incongruent dissolution,a kinetic chemical corrosion model is developed.This model aims to calculate the kinetic porosity alterations within rocks exposed to varying H+concentrations and durations.Subsequently,utilizing the generalized mixture rule(GMR),the kinetic porositydependent mi is formulated.Evaluation of the KPIM-enhanced H-B criterion using compression test data from 5 types of rocks demonstrated a high level of consistency between the criterion and the experimental results,with a coefficient of determination greater than 0.96,a mean absolute percentage error less than 4.84%,and a root-mean-square deviation less than 5.95 MPa.Finally,the physical significance of the porosity-dependent instantaneous mi is clarified:it serves as an indicator of a rock’s capacity to leverage the confining pressure effect.展开更多
[Objectives]To explore the therapeutic effects and potential mechanisms of Glyasperin A(GAA)on myocardial ischemia(MI)based on network pharmacology and molecular docking.[Methods]The molecular structure of GAA was dow...[Objectives]To explore the therapeutic effects and potential mechanisms of Glyasperin A(GAA)on myocardial ischemia(MI)based on network pharmacology and molecular docking.[Methods]The molecular structure of GAA was downloaded from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),and all targets of GAA were predicted by converting 3D model molecules into SMILES online tool and Swiss target prediction.Genecards database and DisGeNET database were used to find the targets related to MI,and then Venny 2.1.0 was used to generate the corresponding Wayne diagram,and then Cytoscape 3.9.1 software was used to construct the protein-protein interaction(PPI)network.With the help of DAVID database and Microbiology,the selected core targets were enriched and analyzed by gene ontology(GO),biological process(BP),and Kyoto Encyclopedia of Genes and Genomes(KEGG),and then the molecular docking between GAA and core targets was verified by AutoDock and Pymol software.[Results]A total of 1883 MI targets were screened,and in the protein-protein interaction network,AKT1,PTGS2,PPARG,ESR1,GSK3B were the proteins with higher values.Gene ontology and KEEG enrichment analysis showed that the biological processes involved mainly included inflammatory response,negative regulation of gene expression,and response to exogenous stimuli.Signaling pathways mainly include IL-17 signaling pathway,HIF-1 signaling pathway,and so on.The results of molecular docking showed that the binding energy of GAA and core protein was less than-5 Kcal/mol in four groups.These indicated that GAA with good binding had a certain therapeutic effect on myocardial ischemia.[Conclusions]Based on the systematic network pharmacology method,this study predicts the basic pharmacological effects and potential mechanisms of GAA in the treatment of MI,and reveals that GAA may treat MI through multiple targets and signaling pathways.It is expected to provide a basis for further study of its pharmacological mechanisms.展开更多
目的探讨EBV mi R-BART17-3p影响原发免疫性血小板减少症(ITP)患儿Treg/Th17平衡的机制。方法收集ITP患儿(ITP组,20例)和健康儿童(对照组,20例)外周血并分离CD_(4)^(+)T细胞。采用实时荧光定量聚合酶链式反应法、Western blot法、酶联...目的探讨EBV mi R-BART17-3p影响原发免疫性血小板减少症(ITP)患儿Treg/Th17平衡的机制。方法收集ITP患儿(ITP组,20例)和健康儿童(对照组,20例)外周血并分离CD_(4)^(+)T细胞。采用实时荧光定量聚合酶链式反应法、Western blot法、酶联免疫吸附法检测EBV mi R-BART17-3p、T细胞免疫球蛋白黏蛋白3(Tim-3)、叉头框蛋白P3(Fox P3)、白细胞介素17A(IL-17A)和转化生长因子-β(TGF-β)的m RNA、蛋白表达水平及含量。采用双荧光素酶报告基因实验考察EBV mi R-BART17-3p对Tim-3表达水平的影响。将15只BALB/C小鼠随机分为空白对照组、模型组、观察组,各5只。腹腔注射抗血小板抗体MWReg30以复制ITP小鼠模型,建模4 d后观察组小鼠予尾静脉注射携带EBV mi R-BART17-3p inhibitor的腺病毒载体。细胞染色并观察形态,检测外周血中TGF-β、IL-17A含量及血小板计数,采用流式细胞仪分别检测CD_(4)^(+)T细胞中Th17和Treg水平,并计算二者百分比。结果与对照组比较,ITP组患儿外周血EBV mi R-BART17-3p表达水平显著升高,Tim-3和TGF-βm RNA表达水平显著降低(P<0.05);Tim-3 m RNA表达水平与EBV mi R-BART17-3p表达水平呈显著负相关(r=-0.732,P<0.001)。Tim-3慢病毒载体p LKO.1-sh-Tim-3(sh-Tim-3)可显著降低Tim-3、Fox P3、TGF-β水平(P<0.05)。mi R-BART17-3p mimic显著升高了CD_(4)^(+)T细胞中mi R-BART17-3p的表达水平,并显著降低了Tim-3、Fox P3、TGF-βm RNA和蛋白表达水平(P<0.05);mi R-BART17-3p mimic可显著降低TGF-β含量,Tim-3+mi R-BART17-3p过表达逆转了mi R-BART17-3p mimic对TGF-β的抑制作用。动物实验结果显示,沉默EBV mi R-BART17-3p可促进Treg分化,减少脾脏和骨髓组织中的巨核细胞计数,并显著增加外周血中血小板计数。结论EBV mi R-BART17-3p可通过Fox P3/Tim-3途径调节ITP患儿Treg/Th17的免疫失衡。展开更多
文摘文章旨在介绍一种基于Go语言中的Gin和GORM框架开发的通用管理信息系统(Management Information System,MIS)的设计与实现。MIS系统在各种组织中发挥着关键作用,用于处理、管理和分析各种信息,通过Gin和GORM这两个流行的开源框架,可以快速搭建一个稳定、高效的MIS系统,以满足企业管理信息系统的需求,并提供友好的用户界面和可靠的数据管理。该方案可针对不同的业务需求进行快速定制和扩展功能,具有高度可扩展性和灵活性。
基金the National Natural Science Foundation of China(62304252)the Youth Innovation Promotion Association of Chinese Academy Sciences(CAS)and IMECAS-HKUST-Joint Laboratory of Microelectronics。
文摘Underground constructions often encounter water environments,where water–rock interaction can increase porosity,thereby weakening engineering rocks.Correspondingly,the failure criterion for chemically corroded rocks becomes essential in the stability analysis and design of such structures.This study enhances the applicability of the Hoek-Brown(H-B)criterion for engineering structures operating in chemically corrosive conditions by introducing a kinetic porosity-dependent instantaneous mi(KPIM).A multiscale experimental investigation,including nuclear magnetic resonance(NMR),X-ray diffraction(XRD),scanning electron microscopy(SEM),pH and ion chromatography analysis,and triaxial compression tests,is employed to quantify pore structural changes and their linkage with the strength responses of limestone under coupled chemical-mechanical(C-M)conditions.By employing ion chromatography and NMR analysis,along with incorporating the principles of free-face dissolution theory accounting for both congruent and incongruent dissolution,a kinetic chemical corrosion model is developed.This model aims to calculate the kinetic porosity alterations within rocks exposed to varying H+concentrations and durations.Subsequently,utilizing the generalized mixture rule(GMR),the kinetic porositydependent mi is formulated.Evaluation of the KPIM-enhanced H-B criterion using compression test data from 5 types of rocks demonstrated a high level of consistency between the criterion and the experimental results,with a coefficient of determination greater than 0.96,a mean absolute percentage error less than 4.84%,and a root-mean-square deviation less than 5.95 MPa.Finally,the physical significance of the porosity-dependent instantaneous mi is clarified:it serves as an indicator of a rock’s capacity to leverage the confining pressure effect.
基金Supported by Project of Science and Technology department of Guizhou Province([2019]1401)Guizhou Administration of Traditional Chinese Medicine(QZYY-2021-03)Guizhou Provincial Health Commission(gzwkj2021-464).
文摘[Objectives]To explore the therapeutic effects and potential mechanisms of Glyasperin A(GAA)on myocardial ischemia(MI)based on network pharmacology and molecular docking.[Methods]The molecular structure of GAA was downloaded from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP),and all targets of GAA were predicted by converting 3D model molecules into SMILES online tool and Swiss target prediction.Genecards database and DisGeNET database were used to find the targets related to MI,and then Venny 2.1.0 was used to generate the corresponding Wayne diagram,and then Cytoscape 3.9.1 software was used to construct the protein-protein interaction(PPI)network.With the help of DAVID database and Microbiology,the selected core targets were enriched and analyzed by gene ontology(GO),biological process(BP),and Kyoto Encyclopedia of Genes and Genomes(KEGG),and then the molecular docking between GAA and core targets was verified by AutoDock and Pymol software.[Results]A total of 1883 MI targets were screened,and in the protein-protein interaction network,AKT1,PTGS2,PPARG,ESR1,GSK3B were the proteins with higher values.Gene ontology and KEEG enrichment analysis showed that the biological processes involved mainly included inflammatory response,negative regulation of gene expression,and response to exogenous stimuli.Signaling pathways mainly include IL-17 signaling pathway,HIF-1 signaling pathway,and so on.The results of molecular docking showed that the binding energy of GAA and core protein was less than-5 Kcal/mol in four groups.These indicated that GAA with good binding had a certain therapeutic effect on myocardial ischemia.[Conclusions]Based on the systematic network pharmacology method,this study predicts the basic pharmacological effects and potential mechanisms of GAA in the treatment of MI,and reveals that GAA may treat MI through multiple targets and signaling pathways.It is expected to provide a basis for further study of its pharmacological mechanisms.
文摘目的探讨EBV mi R-BART17-3p影响原发免疫性血小板减少症(ITP)患儿Treg/Th17平衡的机制。方法收集ITP患儿(ITP组,20例)和健康儿童(对照组,20例)外周血并分离CD_(4)^(+)T细胞。采用实时荧光定量聚合酶链式反应法、Western blot法、酶联免疫吸附法检测EBV mi R-BART17-3p、T细胞免疫球蛋白黏蛋白3(Tim-3)、叉头框蛋白P3(Fox P3)、白细胞介素17A(IL-17A)和转化生长因子-β(TGF-β)的m RNA、蛋白表达水平及含量。采用双荧光素酶报告基因实验考察EBV mi R-BART17-3p对Tim-3表达水平的影响。将15只BALB/C小鼠随机分为空白对照组、模型组、观察组,各5只。腹腔注射抗血小板抗体MWReg30以复制ITP小鼠模型,建模4 d后观察组小鼠予尾静脉注射携带EBV mi R-BART17-3p inhibitor的腺病毒载体。细胞染色并观察形态,检测外周血中TGF-β、IL-17A含量及血小板计数,采用流式细胞仪分别检测CD_(4)^(+)T细胞中Th17和Treg水平,并计算二者百分比。结果与对照组比较,ITP组患儿外周血EBV mi R-BART17-3p表达水平显著升高,Tim-3和TGF-βm RNA表达水平显著降低(P<0.05);Tim-3 m RNA表达水平与EBV mi R-BART17-3p表达水平呈显著负相关(r=-0.732,P<0.001)。Tim-3慢病毒载体p LKO.1-sh-Tim-3(sh-Tim-3)可显著降低Tim-3、Fox P3、TGF-β水平(P<0.05)。mi R-BART17-3p mimic显著升高了CD_(4)^(+)T细胞中mi R-BART17-3p的表达水平,并显著降低了Tim-3、Fox P3、TGF-βm RNA和蛋白表达水平(P<0.05);mi R-BART17-3p mimic可显著降低TGF-β含量,Tim-3+mi R-BART17-3p过表达逆转了mi R-BART17-3p mimic对TGF-β的抑制作用。动物实验结果显示,沉默EBV mi R-BART17-3p可促进Treg分化,减少脾脏和骨髓组织中的巨核细胞计数,并显著增加外周血中血小板计数。结论EBV mi R-BART17-3p可通过Fox P3/Tim-3途径调节ITP患儿Treg/Th17的免疫失衡。