BACKGROUND:Increasing evidence suggests that a close interaction of Kupffer cells with T cells plays a central role in concanavalin A-induced hepatic injury in mice,but the underlying mechanisms remain obscure.The pre...BACKGROUND:Increasing evidence suggests that a close interaction of Kupffer cells with T cells plays a central role in concanavalin A-induced hepatic injury in mice,but the underlying mechanisms remain obscure.The present study aimed to determine the relative roles of Th1 and Th17 type responses in concanavalin A-induced hepatic injury in mice, and to investigate whether or not Kupffer cells contribute to hepatic injury via a Th1 or Th17 type response-dependent pathway. METHODS:Immune-mediated hepatic injury was induced in C57BL/6 mice by intravenous injection of concanavalin A. Kupffer cells were inactivated by pretreatment with gadolinium chloride 24 hours before the concanavalin A injection.The interferon-gamma(IFN-γ)and interleukin-17(IL-17)pathways were blocked by specific neutralizing antibodies.Hepatic injury was assessed using serum transferase activity and pathological analysis.Expression of inflammatory cytokines within the liver was detected by real-time polymerase chain reaction and immunohistochemistry. RESULTS:Neutralization of IFN-γsignificantly attenuated concanavalin A-induced hepatic injury.However,neutralization of IL-17 failed to suppress the injury.Inactivation of Kupffer cells by gadolinium chloride pretreatment protected against concanavalin A-induced injury and significantly reduced hepatic cytokine levels including TNF-α,IL-6 and IFN-γbut not IL-17.CONCLUSION:Our findings suggest that Kupffer cells contribute to concanavalin A-induced hepatic injury via a Th1 type response-dependent pathway and production of inflammatory cytokines including TNF-α,IL-6 and IFN-γ.展开更多
BACKGROUND Atherosclerosis(AS),a chronic inflammatory disease of blood vessels,is a major contributor to cardiovascular disease.Dental pulp stem cells(DPSCs)are capable of exerting immunomodulatory and anti-inflammato...BACKGROUND Atherosclerosis(AS),a chronic inflammatory disease of blood vessels,is a major contributor to cardiovascular disease.Dental pulp stem cells(DPSCs)are capable of exerting immunomodulatory and anti-inflammatory effects by secreting cytokines and exosomes and are widely used to treat autoimmune and inflam-mation-related diseases.Hepatocyte growth factor(HGF)is a pleiotropic cytokine that plays a key role in many inflammatory and autoimmune diseases.AIM To modify DPSCs with HGF(DPSC-HGF)and evaluate the therapeutic effect of DPSC-HGF on AS using an apolipoprotein E-knockout(ApoE-/-)mouse model and an in vitro cellular model.METHODS ApoE-/-mice were fed with a high-fat diet(HFD)for 12 wk and injected with DPSC-HGF or Ad-Null modified DPSCs(DPSC-Null)through tail vein at weeks 4,7,and 11,respectively,and the therapeutic efficacy and mechanisms were analyzed by histopathology,flow cytometry,lipid and glucose measurements,real-time reverse transcription polymerase chain reaction(RT-PCR),and enzyme-linked immunosorbent assay at the different time points of the experiment.An in vitro inflammatory cell model was established by using RAW264.7 cells and human aortic endothelial cells(HAOECs),and indirect co-cultured with supernatant of DPSC-Null(DPSC-Null-CM)or DPSC-HGF-CM,and the effect and mechanisms were analyzed by flow cytometry,RT-PCR and western blot.Nuclear factor-κB(NF-κB)activators and inhibitors were also used to validate the related signaling pathways.RESULTS DPSC-Null and DPSC-HGF treatments decreased the area of atherosclerotic plaques and reduced the expression of inflammatory factors,and the percentage of macrophages in the aorta,and DPSC-HGF treatment had more pronounced effects.DPSCs treatment had no effect on serum lipoprotein levels.The FACS results showed that DPSCs treatment reduced the percentages of monocytes,neutrophils,and M1 macrophages in the peripheral blood and spleen.DPSC-Null-CM and DPSC-HGF-CM reduced adhesion molecule expression in tumor necrosis factor-αstimulated HAOECs and regulated M1 polarization and inflammatory factor expression in lipopolysaccharide-induced RAW264.7 cells by inhibiting the NF-κB signaling pathway.CONCLUSION This study suggested that DPSC-HGF could more effectively ameliorate AS in ApoE-/-mice on a HFD,and could be of greater value in stem cell-based treatments for AS.展开更多
In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of A...In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of Alzheimer’s disease remains unclear.This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer’s disease,as well as the underlying mechanism.We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer’s disease(Aβ_(1-42)-treated hCMEC/D3 and bEnd.3 cells),as well as in the APP/PS1 mouse model.Additionally,injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits.Interestingly,increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-βin the brains of APP/PS1 mice.This effect may be attributable to inhibition of the expression ofβ-site APP cleaving enzyme 1,which is mediated by nuclear factor-kappa B.Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer’s disease pathogenesis,and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice.These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer’s disease.展开更多
Objective In this study,we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupf...Objective In this study,we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupffer cells.Methods Rotary cell culture system was used to construct a simulated microgravity model.GO and KEGG analyses were conducted using the DAVID database.GSEA was performed using the R language.The STRING database was used to conduct PPI analysis.qPCR was used to measure the IL1B,TNFA,CASP3,CASP9,and BCL2L11 mRNA expressions.Western Blotting was performed to detect the level of proteins CASP3 and CASP 9.Flow cytometry was used to detect apoptosis and mitochondrial membrane cells.Transmission electron microscopy was used to detect changes in the ultrastructure of Kupffer cells.Results Transcriptome Sequencing indicated that simulated microgravity affected apoptosis and the inflammatory state of Kupffer cells.Simulated microgravity improved the CASP3,CASP9,and BCL2L11 expressions in Kupffer cells.Annexin-V/PI and JC-1 assays showed that simulated microgravity promoted apoptosis in Kupffer cells.Simulated microgravity causes M1 polarization in Kupffer cells.Conclusion Our study found that simulated microgravity facilitated the apoptosis of Kupffer cells through the mitochondrial pathway and activated Kupffer cells into M1 polarization,which can secrete TNFA to promote apoptosis.展开更多
BACKGROUND Liver fibrosis is the common pathological process associated with the occurrence and development of various chronic liver diseases.At present,there is still a lack of effective prevention and treatment meth...BACKGROUND Liver fibrosis is the common pathological process associated with the occurrence and development of various chronic liver diseases.At present,there is still a lack of effective prevention and treatment methods in clinical practice.Hepatic stellate cell(HSC)plays a key role in liver fibrogenesis.In recent years,the study of liver fibrosis targeting HSC autophagy has become a hot spot in this research field.Angiotensin-converting enzyme 2(ACE2)is a key negative regulator of reninangiotensin system,and its specific molecular mechanism on autophagy and liver fibrosis needs to be further explored.AIM To investigate the effect of ACE2 on hepatic fibrosis in mice by regulating HSC autophagy through the Adenosine monophosphate activates protein kinases(AMPK)/mammalian target of rapamycin(mTOR)pathway.METHODS Overexpression of ACE2 in a mouse liver fibrosis model was induced by injection of liver-specific recombinant adeno-associated virus ACE2 vector(rAAV2/8-ACE2).The degree of liver fibrosis was assessed by histopathological staining and the biomarkers in mouse serum were measured by Luminex multifactor analysis.The number of apoptotic HSCs was assessed by terminal deoxynucleoitidyl transferase-mediated dUTP nick-end labeling(TUNEL)and immunofluorescence staining.Transmission electron microscopy was used to identify the changes in the number of HSC autophagosomes.The effect of ACE2 overexpression on Wu Y et al.ACE2 improves liver fibrosis through autophagy WJG https://www.wjgnet.com 4976 September 7,2023 Volume 29 Issue 33 autophagy-related proteins was evaluated by multicolor immunofluorescence staining.The expression of autophagy-related indicators and AMPK pathway-related proteins was measured by western blotting.RESULTS A mouse model of liver fibrosis was successfully established after 8 wk of intraperitoneal injection of carbon tetrachloride(CCl4).rAAV2/8-ACE2 administration reduced collagen deposition and alleviated the degree of liver fibrosis in mice.The serum levels of platelet-derived growth factor,angiopoietin-2,vascular endothelial growth factor and angiotensin II were decreased,while the levels of interleukin(IL)-10 and angiotensin-(1-7)were increased in the rAAV2/8-ACE2 group.In addition,the expression of alpha-smooth muscle actin,fibronectin,and CD31 was down-regulated in the rAAV2/8-ACE2 group.TUNEL and immunofluorescence staining showed that rAAV2/8-ACE2 injection increased HSC apoptosis.Moreover,rAAV2/8-ACE2 injection notably decreased the number of autophagosomes and the expression of autophagy-related proteins(LC3I,LC3II,Beclin-1),and affected the expression of AMPK pathway-related proteins(AMPK,p-AMPK,p-mTOR).CONCLUSION ACE2 overexpression can inhibit HSC activation and promote cell apoptosis by regulating HSC autophagy through the AMPK/mTOR pathway,thereby alleviating liver fibrosis and hepatic sinusoidal remodeling.展开更多
Alcohol abuse has recently become a serious health concern worldwide,and the incidence of alcoholic liver disease(ALD)is rapidly increasing with high morbidity and mortality.Ferroptosis is a newly recognized form of r...Alcohol abuse has recently become a serious health concern worldwide,and the incidence of alcoholic liver disease(ALD)is rapidly increasing with high morbidity and mortality.Ferroptosis is a newly recognized form of regulated cell death caused by the iron-dependent accumulation of lipid peroxidation.Here we showed that the circadian clock protein brain and muscle arnt-like protein-1(BMAL1)in hepatocytes is both necessary and sufficient to protect against ALD by mitigating ferroptosis.U pon exposure to alcohol(5%Lieber-DeCarli liquid alcohol diet for 10 days before binged alcohol with 5 g/kg body weight in vivo,300 mmol/L for 12 h in vitro,respectively),the content of iron,reactive oxygen species(ROS)and malondialdehyde(MDA)was boosted signifi cantly while glutathione(GSH)was decreased that mainly based on the downregulated protein expression of ferritin heavy chain(FTH),ferroportin(FPN),heme oxygenase1(HO-1)and anti-cystine/glutamate antiporter(SLC7A11),while these changes could be abolished by ferroptosis inhibitor Ferrostatin-1[Fer-1(5 mg/kg body weight for 10 days in vivo,10μmol/L for 2 h in vitro,respectively)].Further study indicated that the alcohol could activate the protein expression of BMAL1 which exerts a protective effect against ferroptosis through promoting nuclear factor erythroid 2-related factor 2(Nrf2)translocation into nuclear and subsequently stimulating its downstream proteins FTH,FPN,glutathione peroxidase 4 activity(GPX4),HO-1,SLC7A11,while knockdown of BMAL1 and Nrf2 by RNA interference further downregulated the expression of these protein and thus promoting ferroptosis in response to alcohol.Collectively,our results unveiled that the protective action of BMAL1 during alcohol challenge depends on its ability to activate Nrf2-ARE antiferroptosis pathway and targeting hepatic BMAL1 to dampen hepatic ferroptosis signaling may have therapeutic potential for ALD.展开更多
[Objectives]To study the effect of human umbilical cord mesenchymal stem cells(hUC-MSCs)on GRP78/ATF4 pathway in APP/PS1 mice.[Methods]Twelve 6-month-old female APP/PS1 mice were randomly divided into model group(MOD,...[Objectives]To study the effect of human umbilical cord mesenchymal stem cells(hUC-MSCs)on GRP78/ATF4 pathway in APP/PS1 mice.[Methods]Twelve 6-month-old female APP/PS1 mice were randomly divided into model group(MOD,n=6)and human umbilical cord mesenchymal stem cell treatment group(MSC,n=6);six 6-month-old C57BL/6N mice were used as control group(CON,n=6).The mice in each group were treated with the fourth generation of human umbilical cord mesenchymal stem cells through tail vein.Four weeks later,the mice in each group were killed.The expression of GFP78 and ATF4 in the cortex of mice in each group was detected by Western blotting and real-time fluorescence quantitative PCR.[Results]The results of immunoblotting and real-time fluorescence quantitative PCR showed that the expression of GRP78 in MOD group was lower than that in CON group and the expression of ATF4 increased.The expression of GRP78 protein in MSC group was higher than that in MOD group,but the expression of ATF4 protein was lower.The results of real-time fluorescence quantitative PCR showed that the mRNA level of GRP78 decreased and the mRNA level of ATF4 increased in MOD group compared with CON group.The mRNA level of GRP78 in MSC group was higher than that in MOD group,while the mRNA level of ATF4 in MSC group was lower than that in MOD group.[Conclusions]Human umbilical cord mesenchymal stem cells can regulate the expression of GRP78/ATF4 pathway in APP/PSI mice,which may be related to the stress level of endoplasmic reticulum in the brain of APP/PS1 mice mediated by human umbilical cord mesenchymal stem cells.展开更多
The mouse genome has a high degree of homology with the human genome,and its physiological,biochemical,and developmental regulation mechanisms are similar to those of humans;therefore,mice are widely used as experimen...The mouse genome has a high degree of homology with the human genome,and its physiological,biochemical,and developmental regulation mechanisms are similar to those of humans;therefore,mice are widely used as experimental animals.However,it is undeniable that interspecies differences between humans and mice can lead to experimental errors.The differences in the immune system have become an impor-tant factor limiting current immunological research.The application of immunodefi-cient mice provides a possible solution to these problems.By transplanting human immune cells or tissues,such as peripheral blood mononuclear cells or hematopoietic stem cells,into immunodeficient mice,a human immune system can be reconstituted in the mouse body,and the engrafted immune cells can elicit human-specific immune responses.Researchers have been actively exploring the development and differen-tiation conditions of host recipient animals and grafts in order to achieve better im-mune reconstitution.Through genetic engineering methods,immunodeficient mice can be further modified to provide a favorable developmental and differentiation microenvironment for the grafts.From initially only being able to reconstruct single T lymphocyte lineages,it is now possible to reconstruct lymphoid and myeloid cells,providing important research tools for immunology-related studies.In this review,we compare the differences in immune systems of humans and mice,describe the devel-opment history of human immune reconstitution from the perspectives of immuno-deficient mice and grafts,and discuss the latest advances in enhancing the efficiency of human immune cell reconstitution,aiming to provide important references for im-munological related researches.展开更多
TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal...TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.展开更多
Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume respon...Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume responsibility for spontaneous retinal regeneration,wherein endogenous Müller glia undergo proliferation,transform into Müller glia-derived progenitor cells,and subsequently regenerate the entire retina with restored functionality.Conversely,Müller glia in the mouse and human retina exhibit limited neural reprogramming.Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders.Müller glia reprogramming in mice has been accomplished with remarkable success,through various technologies.Advancements in molecular,genetic,epigenetic,morphological,and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice.Nevertheless,there remain issues that hinder improving reprogramming efficiency and maturity.Thus,understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency,and for developing novel Müller glia reprogramming strategies.This review describes recent progress in relatively successful Müller glia reprogramming strategies.It also provides a basis for developing new Müller glia reprogramming strategies in mice,including epigenetic remodeling,metabolic modulation,immune regulation,chemical small-molecules regulation,extracellular matrix remodeling,and cell-cell fusion,to achieve Müller glia reprogramming in mice.展开更多
A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati...A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.展开更多
AIM: To investigate the correlation between lymphogenous metastasis and matrix metalloproteinases (MMPs) activity and the expression of Fas ligand of tumor cells in lymph nodes. METHODS: Fifty-six inbred 615-mice were...AIM: To investigate the correlation between lymphogenous metastasis and matrix metalloproteinases (MMPs) activity and the expression of Fas ligand of tumor cells in lymph nodes. METHODS: Fifty-six inbred 615-mice were equally divided into 2 groups and inoculated with Hca-F and Hca-P cells. Their lymph node metastatic rates were examined. Growth fraction of lymphocytes in host lymph nodes was detected by flow cytometry. The Hca-F and Hca-P cells were cultured with extract of lymph node, liver or spleen. The quantity of MMPs in these supernatants was examined by zymographic analysis. The expression of Fas ligand, PCNA, Bcl-2 protein of Hca-F and Hca-P cells in the mice were examined by immunohistochemistry. The apoptosis signals of macro-phages in lymph nodes were observed with in situ DNA fragmentation. RESULTS: On the 28th day post-inoculation, the lymph node metastatic rate of HcaF was 80%(16/20), whereas that of Hca-P was 25%(5/20). The growth fraction of lymphocytes was as follows: in the Hca-F cells, the proliferating peak of lymphocytes appeared on the 14th day post inoculation and then decreased rapidly, while in HcaP cells, the peak appeared on the 7th day post inoculation and then kept at a high level. With the extract of lymph node, the quantity of the MMP-9 activity increased (P【0.01) and active MMP-9 and MMP-2 were produced by both Hca-F and Hca-P tumor cells, which did not produce MMPs without the extract of lymph node or with the extracts of the liver and spleen. The expression of Fas Ligand of Hca-F cells was stronger than that of Hca-P cells (P 【0.01). The expressions of PCNA and Bcl-2 protein of Hca-F cells in the tumors of inoculated area were the same as that of Hca-P cells. In situ DNA fragmentation showed that the positive signals of macrophages were around Hca-F cells. CONCLUSION: Secretion of MMPs which was associated with metastatic ability of Hca-F and Hca-P tumor cells depends on the environment of lymph nodes. The increased expression of Fas ligand protein of Hca-F tumor cells with high lymphogenous metastatic potential in lymph nodes may help tumor cells escape from being killed by host lymphocytes.展开更多
AIM:To examine whether heme oxygenase (HO)-1 overexpression would exert direct or indirect effects on Kupffer cells activation, which lead to aggravation of reperfusion injury.METHODS: Donors were pretreated with coba...AIM:To examine whether heme oxygenase (HO)-1 overexpression would exert direct or indirect effects on Kupffer cells activation, which lead to aggravation of reperfusion injury.METHODS: Donors were pretreated with cobalt protoporphyrin (CoPP) or zinc protoporphyrin (ZnPP), HO-1 inducer and antagonist, respectively. Livers were stored at 4℃ for 24 h before transplantation. Kupffer cells were isolated and cultured for 6 h after liver reperfusion.RESULTS: Postoperatively, serum transaminases were significantly lower and associated with less liver injury when donors were pretreated with CoPP, as compared with the ZnPP group. Production of the cytokines tumor necrosis factor-α and interleukin-6 generated by Kupffer cells decreased in the CoPP group. The CD14 expression levels (RT-PCR/Western blots) of Kupffer cells from CoPP-pretreated liver grafts reduced.CONCLUSION: The study suggests that the potential utility of HO-1 overexpression in preventing ischemia/reperfusion injury results from inhibition of Kupffer cells activation.展开更多
Kupffer cells, the resident liver macrophages have long been considered as mostly scavenger cells responsible for removing particulate material from the portal circulation. However, evidence derived mostly from animal...Kupffer cells, the resident liver macrophages have long been considered as mostly scavenger cells responsible for removing particulate material from the portal circulation. However, evidence derived mostly from animal models, indicates that Kupffer cells may be implicated in the pathogenesis of various liver diseases including viral hepatitis, steatohepatitis, alcoholic liver disease, intrahepatic cholostasis, activation or rejection of the liver during liver transplantation and liver fibrosis. There is accumulating evidence, reviewed in this paper, suggesting that Kupffer cells may act both as effector cells in the destruction of hepatocytes by produdng harmful soluble mediators as well as antigen presenting cells during viral infections of the liver. Moreover they may represent a significant source of chemoattractant molecules for cytotoxic CD8 and regulatory T cells. Their role in fibrosis is well established as they are one of the main sources of TGFβ1 production, which leads to the transformation of stellate cells into myofibroblasts. Whether all these variable functions in the liver are mediated by different Kupffer cell subpopulations remains to be evaluated. In this review we propose a model that demonstrates the role of Kupffer cells in the pathogenesis of liver disease.展开更多
Successful spermatogonial transplantation requires depletion of the host germ cells to allow efficient colonization of the donor spermatogonial stem cells. Although a sterilizing drug,busulfan (Myleran),is commonly ...Successful spermatogonial transplantation requires depletion of the host germ cells to allow efficient colonization of the donor spermatogonial stem cells. Although a sterilizing drug,busulfan (Myleran),is commonly used for preparing a recipient mouse before transplantation,the optimal dose of this drug has not yet been defined.The present study investigated the effects of different doses of busulfan (10-50 mg per kg body weight) on survival rate,testicular mass and histomorphology,and on the haploid spermatids and spermatozoa of male BALB/c mice.The results suggest that a dosage of 30 mg kg^-1 is optimal for the ablative treatment withbusulfan used to prepare the recipient mice. This dose results in an adequate depletion of the host germ cells for colonization of donorderived spermatogonial stem cells and causes the lowest death rate of the animals.展开更多
BACKGROUND: Ron receptor tyrosine kinase signaling in macrophages, including Kupffer cells and alveolar macrophages,suppresses endotoxin-induced proinflammatory cytokine/chemokine production. Further, we have also ide...BACKGROUND: Ron receptor tyrosine kinase signaling in macrophages, including Kupffer cells and alveolar macrophages,suppresses endotoxin-induced proinflammatory cytokine/chemokine production. Further, we have also identified genes from Ron replete and Ron deplete livers that were differentially expressed during the progression of liver inflammation associated with acute liver failure in mice by microarray analyses.While important genes and signaling pathways have been identified downstream of Ron signaling during progression of inflammation by this approach, the precise role that Ron receptor plays in regulating the transcriptional landscape in macrophages, and particular in isolated Kupffer cells, has still not been investigated.METHODS: Kupffer cells were isolated from wild-type(TK+/+)and Ron tyrosine kinase deficient(TK-/-) mice. Ex vivo, the cells were treated with lipopolysaccharide(LPS) in the presence or absence of the Ron ligand, hepatocyte growth factor-like protein(HGFL). Microarray and qRT-PCR analyses were utilized to identify alterations in gene expression between genotypes.RESULTS: Microarray analyses identified genes expressed differentially in TK+/+ and TK-/- Kupffer cells basally as well as after HGFL and LPS treatment. Interestingly, our studies identified Mefv, a gene that codes for the anti-inflammatory protein pyrin, as an HGFL-stimulated Ron-dependent gene.Moreover, lipocalin 2, a proinflammatory gene, which is induced by LPS, was significantly suppressed by HGFL treatment.Microarray results were validated by qRT-PCR studies on Kupffer cells treated with LPS and HGFL.CONCLUSION: The studies herein suggest a novel mechanism whereby HGFL-induced Ron receptor activation promotes the expression of anti-inflammatory genes while inhibiting genes involved in inflammation with a net effect of diminished inflammation in macrophages.展开更多
BACKGROUND: The non-function and dysfunction of primary liver graft likely involves dependence on Kupffer cells and hepatic innervation. The present experiment was designed to study the expression of P-selectin and in...BACKGROUND: The non-function and dysfunction of primary liver graft likely involves dependence on Kupffer cells and hepatic innervation. The present experiment was designed to study the expression of P-selectin and intercellular adhesion molecule-1 (ICAM-1) mRNA in liver graft and to elucidate the role of Kupffer cells and the sympathetic nerve of the liver in down-regulating this expression. METHODS: Donor rats were given hexamethonium, a sympathetic ganglionic blocking agent, and/or gadolinium chloride, an inhibitor of Kupffer cells. Then the changes of graft P-selectin and ICAM-1 mRNA expression were measured after liver transplantation. RESULTS: The expressions of P-selectin and ICAM-1 mRNA were increased after liver transplantation, and down-regulated by liver denervation and elimination of Kupffer cells. CONCLUSIONS: Live donor denervation and elimination of Kupffer cells down-regulated the expressions of P-selectin and ICAM-1 mRNA in grafts. This may decrease graft ischemia/reperfusion injury.展开更多
Objective To investigate a possibility of repairing damaged brain by intracerebroventricular transplantation of neural stem cells (NSCs) in the adult mice subjected to glutamate-induced excitotoxic injury. Methods M...Objective To investigate a possibility of repairing damaged brain by intracerebroventricular transplantation of neural stem cells (NSCs) in the adult mice subjected to glutamate-induced excitotoxic injury. Methods Mouse NSCs were isolated from the brains of embryos at 15-day postcoitum (dpc). The expression of nestin, a special antigen for NSC, was detected by immunocytochemistry. Immunofluorescence staining was carried out to observe the survival and location of transplanted NSCs. The animals in the MSG+NSCs group received intracerebroventricular transplantation of NSCs (approximately 1.0×10^5 cells) separately on day 1 and day 10 after 10-d MSG exposure (4.0 g/kg per day). The mice in control and MSG groups received intracerebroventricular injection of Dulbecco's minimum essential medium (DMEM) instead of NSCs. On day 11 after the last NSC transplantation, the test of Y-maze discrimination learning was performed, and then the histopathology of the animal brains was studied to analyze the MSG-induced functional and morphological changes of brain and the effects of intracerebroventricular transplantation of NSCs on the brain repair. Results The isolated cells were Nestin-positive. The grafted NSCs in the host brain were region-specifically survived at 10-d post-transplantation. Intracerebroventricular transplantation of NSCs obviously facilitated the brain recovery from glutamate-induced behavioral disturbances and histopathological impairs in adult mice. Conclusion Intracerebroventricular transplantation of NSCs may be feasible in repairing diseased or damaged brain tissue.展开更多
Purpose: The objective of this study was to investigate the anti-tumor effects and analyze the mechanism of artesunate (ART) action on breast cancer in vivo using tumor transplanted nude mice. Methods: The human b...Purpose: The objective of this study was to investigate the anti-tumor effects and analyze the mechanism of artesunate (ART) action on breast cancer in vivo using tumor transplanted nude mice. Methods: The human breast tumor cell line MCF-7 was transplanted into nude mice, and the animals were treated with various doses of ART alone or in combination with cyclophosphamide (CTX) or normal saline (NS). The tumor inhibitory effects were observed and compared, and the ultrastructural morphology of the transplanted tumor cells was observed by electron microscopy. The apoptosis rates and cell cycle status were detected by flow cytometry (FCM). The expression of apoptosis-related proteins p53, Bcl-2, Bax and Caspase-3 were detected by immunohistochemistry and IGF-IR was detected by western blot. The expression correlation for these proteins was also analyzed. Results: The tumor inhibition rates in the low dose ART group, high dose ART group, CTX group and combined drug therapy group were (24.39±10.20)%, (40.24±7.02)%, (57.01±5.84)% and (68.29±5.1)%, respectively. The cell cycle was arrested in phase G0/Gt after treatment with ART. The expression of Bcl-2 was significantly reduced, and the expression levels of Bax and Caspase-3 were significantly increased in the ART group compared to the negative control saline group. There was no significant difference detected in p53 expression. The Bcl-2 level was negatively related to Bax and Caspase-3. The western blotting results showed IGF-IR downregulation. Conclusions: ART inhibits the growth of MCF-7 breast tumor cell xenografts in nude mice. The anti-tumor mechanism of ART for human breast carcinoma in nude mice might be correlated with the alteration of apoptosis related protein expression, which may further induce apoptosis and inhibit cell proliferation.展开更多
To explore the functional mechanism of Resveratrol against colon cancer cells ls174t and the growth of colon cancer tissue of tumor-bearing mice, MTT method was used to observe the functions of resveratrol for inhibit...To explore the functional mechanism of Resveratrol against colon cancer cells ls174t and the growth of colon cancer tissue of tumor-bearing mice, MTT method was used to observe the functions of resveratrol for inhibition against cells ls174t in vitro. Transmission electron microscope was used to observe the cell apoptosis. FCM assay was performed to measure the change of the cell apoptosis rate and of cell cycle. RT-PCR method was used to detect the expressions of bcl-2 and bax mRNA. Western blot method was used to detect the expressions of bcl-2 and bax protein. Ceils ls174t were transplanted subcutaneously to nude mice to observe the effect of resveratrol on the growth of subcutaneously transplanted tumor, RT-PCR method was used to detect the expressions of bcl-2 and bax mRNA in the tumor tissue. Western blot method was used to detect the expressions of bcl-2 and bax protein in the tumor tissue. Resveratrol has an effect of inhibiting proliferation of cells ls174t in vitro(P〈0.01). It is able to induce the apoptosis of cells ls174t, causing the decrease in the expression of bcl-2 and the increase in the expression of bax. Resveratrol could inhibit the growth of subcutaneously transplanted tumor of nude mice(P〈0.05), causing the decrease in the expression of bcl-2 and the increase in the expression of bax. Resveratrol can inhibit the growth of cells 174t and the growth of subcutaneously transplanted tumor. The mechanism is possibly related to the induction of the cell apoptosis and the regulation of bcl-2/bax expression.展开更多
基金supported by grants from the National Basic Research Program of China(973 Program)(2009CB522403)the Key Program of the National Natural Science Foundation of China(30730085)the National Natural Science Youth Foundation of China(J20090846)
文摘BACKGROUND:Increasing evidence suggests that a close interaction of Kupffer cells with T cells plays a central role in concanavalin A-induced hepatic injury in mice,but the underlying mechanisms remain obscure.The present study aimed to determine the relative roles of Th1 and Th17 type responses in concanavalin A-induced hepatic injury in mice, and to investigate whether or not Kupffer cells contribute to hepatic injury via a Th1 or Th17 type response-dependent pathway. METHODS:Immune-mediated hepatic injury was induced in C57BL/6 mice by intravenous injection of concanavalin A. Kupffer cells were inactivated by pretreatment with gadolinium chloride 24 hours before the concanavalin A injection.The interferon-gamma(IFN-γ)and interleukin-17(IL-17)pathways were blocked by specific neutralizing antibodies.Hepatic injury was assessed using serum transferase activity and pathological analysis.Expression of inflammatory cytokines within the liver was detected by real-time polymerase chain reaction and immunohistochemistry. RESULTS:Neutralization of IFN-γsignificantly attenuated concanavalin A-induced hepatic injury.However,neutralization of IL-17 failed to suppress the injury.Inactivation of Kupffer cells by gadolinium chloride pretreatment protected against concanavalin A-induced injury and significantly reduced hepatic cytokine levels including TNF-α,IL-6 and IFN-γbut not IL-17.CONCLUSION:Our findings suggest that Kupffer cells contribute to concanavalin A-induced hepatic injury via a Th1 type response-dependent pathway and production of inflammatory cytokines including TNF-α,IL-6 and IFN-γ.
文摘BACKGROUND Atherosclerosis(AS),a chronic inflammatory disease of blood vessels,is a major contributor to cardiovascular disease.Dental pulp stem cells(DPSCs)are capable of exerting immunomodulatory and anti-inflammatory effects by secreting cytokines and exosomes and are widely used to treat autoimmune and inflam-mation-related diseases.Hepatocyte growth factor(HGF)is a pleiotropic cytokine that plays a key role in many inflammatory and autoimmune diseases.AIM To modify DPSCs with HGF(DPSC-HGF)and evaluate the therapeutic effect of DPSC-HGF on AS using an apolipoprotein E-knockout(ApoE-/-)mouse model and an in vitro cellular model.METHODS ApoE-/-mice were fed with a high-fat diet(HFD)for 12 wk and injected with DPSC-HGF or Ad-Null modified DPSCs(DPSC-Null)through tail vein at weeks 4,7,and 11,respectively,and the therapeutic efficacy and mechanisms were analyzed by histopathology,flow cytometry,lipid and glucose measurements,real-time reverse transcription polymerase chain reaction(RT-PCR),and enzyme-linked immunosorbent assay at the different time points of the experiment.An in vitro inflammatory cell model was established by using RAW264.7 cells and human aortic endothelial cells(HAOECs),and indirect co-cultured with supernatant of DPSC-Null(DPSC-Null-CM)or DPSC-HGF-CM,and the effect and mechanisms were analyzed by flow cytometry,RT-PCR and western blot.Nuclear factor-κB(NF-κB)activators and inhibitors were also used to validate the related signaling pathways.RESULTS DPSC-Null and DPSC-HGF treatments decreased the area of atherosclerotic plaques and reduced the expression of inflammatory factors,and the percentage of macrophages in the aorta,and DPSC-HGF treatment had more pronounced effects.DPSCs treatment had no effect on serum lipoprotein levels.The FACS results showed that DPSCs treatment reduced the percentages of monocytes,neutrophils,and M1 macrophages in the peripheral blood and spleen.DPSC-Null-CM and DPSC-HGF-CM reduced adhesion molecule expression in tumor necrosis factor-αstimulated HAOECs and regulated M1 polarization and inflammatory factor expression in lipopolysaccharide-induced RAW264.7 cells by inhibiting the NF-κB signaling pathway.CONCLUSION This study suggested that DPSC-HGF could more effectively ameliorate AS in ApoE-/-mice on a HFD,and could be of greater value in stem cell-based treatments for AS.
基金supported by STI2030-Major Projects,No.2021ZD 0201801(to JG)Shanxi Province Basic Research Program,No.20210302123429(to QS).
文摘In patients with Alzheimer’s disease,gamma-glutamyl transferase 5(GGT5)expression has been observed to be downregulated in cerebrovascular endothelial cells.However,the functional role of GGT5 in the development of Alzheimer’s disease remains unclear.This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer’s disease,as well as the underlying mechanism.We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer’s disease(Aβ_(1-42)-treated hCMEC/D3 and bEnd.3 cells),as well as in the APP/PS1 mouse model.Additionally,injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits.Interestingly,increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-βin the brains of APP/PS1 mice.This effect may be attributable to inhibition of the expression ofβ-site APP cleaving enzyme 1,which is mediated by nuclear factor-kappa B.Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer’s disease pathogenesis,and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice.These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer’s disease.
文摘Objective In this study,we analyzed the transcriptome sequences of Kupffer cells exposed to simulated microgravity for 3 d and conducted biological experiments to determine how microgravity initiates apoptosis in Kupffer cells.Methods Rotary cell culture system was used to construct a simulated microgravity model.GO and KEGG analyses were conducted using the DAVID database.GSEA was performed using the R language.The STRING database was used to conduct PPI analysis.qPCR was used to measure the IL1B,TNFA,CASP3,CASP9,and BCL2L11 mRNA expressions.Western Blotting was performed to detect the level of proteins CASP3 and CASP 9.Flow cytometry was used to detect apoptosis and mitochondrial membrane cells.Transmission electron microscopy was used to detect changes in the ultrastructure of Kupffer cells.Results Transcriptome Sequencing indicated that simulated microgravity affected apoptosis and the inflammatory state of Kupffer cells.Simulated microgravity improved the CASP3,CASP9,and BCL2L11 expressions in Kupffer cells.Annexin-V/PI and JC-1 assays showed that simulated microgravity promoted apoptosis in Kupffer cells.Simulated microgravity causes M1 polarization in Kupffer cells.Conclusion Our study found that simulated microgravity facilitated the apoptosis of Kupffer cells through the mitochondrial pathway and activated Kupffer cells into M1 polarization,which can secrete TNFA to promote apoptosis.
文摘BACKGROUND Liver fibrosis is the common pathological process associated with the occurrence and development of various chronic liver diseases.At present,there is still a lack of effective prevention and treatment methods in clinical practice.Hepatic stellate cell(HSC)plays a key role in liver fibrogenesis.In recent years,the study of liver fibrosis targeting HSC autophagy has become a hot spot in this research field.Angiotensin-converting enzyme 2(ACE2)is a key negative regulator of reninangiotensin system,and its specific molecular mechanism on autophagy and liver fibrosis needs to be further explored.AIM To investigate the effect of ACE2 on hepatic fibrosis in mice by regulating HSC autophagy through the Adenosine monophosphate activates protein kinases(AMPK)/mammalian target of rapamycin(mTOR)pathway.METHODS Overexpression of ACE2 in a mouse liver fibrosis model was induced by injection of liver-specific recombinant adeno-associated virus ACE2 vector(rAAV2/8-ACE2).The degree of liver fibrosis was assessed by histopathological staining and the biomarkers in mouse serum were measured by Luminex multifactor analysis.The number of apoptotic HSCs was assessed by terminal deoxynucleoitidyl transferase-mediated dUTP nick-end labeling(TUNEL)and immunofluorescence staining.Transmission electron microscopy was used to identify the changes in the number of HSC autophagosomes.The effect of ACE2 overexpression on Wu Y et al.ACE2 improves liver fibrosis through autophagy WJG https://www.wjgnet.com 4976 September 7,2023 Volume 29 Issue 33 autophagy-related proteins was evaluated by multicolor immunofluorescence staining.The expression of autophagy-related indicators and AMPK pathway-related proteins was measured by western blotting.RESULTS A mouse model of liver fibrosis was successfully established after 8 wk of intraperitoneal injection of carbon tetrachloride(CCl4).rAAV2/8-ACE2 administration reduced collagen deposition and alleviated the degree of liver fibrosis in mice.The serum levels of platelet-derived growth factor,angiopoietin-2,vascular endothelial growth factor and angiotensin II were decreased,while the levels of interleukin(IL)-10 and angiotensin-(1-7)were increased in the rAAV2/8-ACE2 group.In addition,the expression of alpha-smooth muscle actin,fibronectin,and CD31 was down-regulated in the rAAV2/8-ACE2 group.TUNEL and immunofluorescence staining showed that rAAV2/8-ACE2 injection increased HSC apoptosis.Moreover,rAAV2/8-ACE2 injection notably decreased the number of autophagosomes and the expression of autophagy-related proteins(LC3I,LC3II,Beclin-1),and affected the expression of AMPK pathway-related proteins(AMPK,p-AMPK,p-mTOR).CONCLUSION ACE2 overexpression can inhibit HSC activation and promote cell apoptosis by regulating HSC autophagy through the AMPK/mTOR pathway,thereby alleviating liver fibrosis and hepatic sinusoidal remodeling.
文摘Alcohol abuse has recently become a serious health concern worldwide,and the incidence of alcoholic liver disease(ALD)is rapidly increasing with high morbidity and mortality.Ferroptosis is a newly recognized form of regulated cell death caused by the iron-dependent accumulation of lipid peroxidation.Here we showed that the circadian clock protein brain and muscle arnt-like protein-1(BMAL1)in hepatocytes is both necessary and sufficient to protect against ALD by mitigating ferroptosis.U pon exposure to alcohol(5%Lieber-DeCarli liquid alcohol diet for 10 days before binged alcohol with 5 g/kg body weight in vivo,300 mmol/L for 12 h in vitro,respectively),the content of iron,reactive oxygen species(ROS)and malondialdehyde(MDA)was boosted signifi cantly while glutathione(GSH)was decreased that mainly based on the downregulated protein expression of ferritin heavy chain(FTH),ferroportin(FPN),heme oxygenase1(HO-1)and anti-cystine/glutamate antiporter(SLC7A11),while these changes could be abolished by ferroptosis inhibitor Ferrostatin-1[Fer-1(5 mg/kg body weight for 10 days in vivo,10μmol/L for 2 h in vitro,respectively)].Further study indicated that the alcohol could activate the protein expression of BMAL1 which exerts a protective effect against ferroptosis through promoting nuclear factor erythroid 2-related factor 2(Nrf2)translocation into nuclear and subsequently stimulating its downstream proteins FTH,FPN,glutathione peroxidase 4 activity(GPX4),HO-1,SLC7A11,while knockdown of BMAL1 and Nrf2 by RNA interference further downregulated the expression of these protein and thus promoting ferroptosis in response to alcohol.Collectively,our results unveiled that the protective action of BMAL1 during alcohol challenge depends on its ability to activate Nrf2-ARE antiferroptosis pathway and targeting hepatic BMAL1 to dampen hepatic ferroptosis signaling may have therapeutic potential for ALD.
基金Supported by Major Project of Basic Scientific Research in Chengde Medical University(KY202217).
文摘[Objectives]To study the effect of human umbilical cord mesenchymal stem cells(hUC-MSCs)on GRP78/ATF4 pathway in APP/PS1 mice.[Methods]Twelve 6-month-old female APP/PS1 mice were randomly divided into model group(MOD,n=6)and human umbilical cord mesenchymal stem cell treatment group(MSC,n=6);six 6-month-old C57BL/6N mice were used as control group(CON,n=6).The mice in each group were treated with the fourth generation of human umbilical cord mesenchymal stem cells through tail vein.Four weeks later,the mice in each group were killed.The expression of GFP78 and ATF4 in the cortex of mice in each group was detected by Western blotting and real-time fluorescence quantitative PCR.[Results]The results of immunoblotting and real-time fluorescence quantitative PCR showed that the expression of GRP78 in MOD group was lower than that in CON group and the expression of ATF4 increased.The expression of GRP78 protein in MSC group was higher than that in MOD group,but the expression of ATF4 protein was lower.The results of real-time fluorescence quantitative PCR showed that the mRNA level of GRP78 decreased and the mRNA level of ATF4 increased in MOD group compared with CON group.The mRNA level of GRP78 in MSC group was higher than that in MOD group,while the mRNA level of ATF4 in MSC group was lower than that in MOD group.[Conclusions]Human umbilical cord mesenchymal stem cells can regulate the expression of GRP78/ATF4 pathway in APP/PSI mice,which may be related to the stress level of endoplasmic reticulum in the brain of APP/PS1 mice mediated by human umbilical cord mesenchymal stem cells.
基金Scientific and Technological Resources Coordination Project of Shaanxi Province,Grant/Award Number:2020PT-002,2022PT-43 and CX-PT-18Special Fund for Military Laboratory Animals,Grant/Award Number:SYDW_KY(2021)13State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers,Grant/Award Number:CBSKL2022ZZ28。
文摘The mouse genome has a high degree of homology with the human genome,and its physiological,biochemical,and developmental regulation mechanisms are similar to those of humans;therefore,mice are widely used as experimental animals.However,it is undeniable that interspecies differences between humans and mice can lead to experimental errors.The differences in the immune system have become an impor-tant factor limiting current immunological research.The application of immunodefi-cient mice provides a possible solution to these problems.By transplanting human immune cells or tissues,such as peripheral blood mononuclear cells or hematopoietic stem cells,into immunodeficient mice,a human immune system can be reconstituted in the mouse body,and the engrafted immune cells can elicit human-specific immune responses.Researchers have been actively exploring the development and differen-tiation conditions of host recipient animals and grafts in order to achieve better im-mune reconstitution.Through genetic engineering methods,immunodeficient mice can be further modified to provide a favorable developmental and differentiation microenvironment for the grafts.From initially only being able to reconstruct single T lymphocyte lineages,it is now possible to reconstruct lymphoid and myeloid cells,providing important research tools for immunology-related studies.In this review,we compare the differences in immune systems of humans and mice,describe the devel-opment history of human immune reconstitution from the perspectives of immuno-deficient mice and grafts,and discuss the latest advances in enhancing the efficiency of human immune cell reconstitution,aiming to provide important references for im-munological related researches.
基金supported by the Koeln Fortune Program/Faculty of Medicine,University of Cologne,the Alzheimer Forschung Initiative e.V.(grant#22039,to HZ)open-access funding from the DFG/GRC issued to the University of CologneAlzheimer Forschung Initiative e.V.for Open Access Publishing(a publication grant#P2401,to MAAK)。
文摘TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon.TAU is missorted and aggregated in an array of diseases known as tauopathies.Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications,changes of which affect microtubule stability and dynamics,microtubule interaction with other proteins and cellular structures,and mediate recruitment of microtubule-severing enzymes.As impairment of microtubule dynamics causes neuronal dysfunction,we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics.We therefore aimed to study the effects of a disease-causing mutation of TAU(P301L)on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics,to assess whether P301L-TAU causes stability-changing modifications to microtubules.To investigate TAU localization,phosphorylation,and effects on tubulin post-translational modifications,we expressed wild-type or P301L-TAU in human MAPT-KO induced pluripotent stem cell-derived neurons(i Neurons)and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU(p R5 mice).Human neurons expressing the longest TAU isoform(2N4R)with the P301L mutation showed increased TAU phosphorylation at the AT8,but not the p-Ser-262 epitope,and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons.P301L-TAU showed pronounced somatodendritic presence,but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU.P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation,but reduced acetylation,of microtubules compared with non-transgenic littermates.In sum,P301L-TAU results in changes in microtubule PTMs,suggestive of impairment of microtubule stability.This is accompanied by missorting and aggregation of TAU in mice but not in i Neurons.Microtubule PTMs/impairment may be of key importance in tauopathies.
基金supported by the National Natural Science Foundation of China,No.31930068National Key Research and Development Program of China,Nos.2018YFA0107302 and 2021YFA1101203(all to HX).
文摘Müller glia,as prominent glial cells within the retina,plays a significant role in maintaining retinal homeostasis in both healthy and diseased states.In lower vertebrates like zebrafish,these cells assume responsibility for spontaneous retinal regeneration,wherein endogenous Müller glia undergo proliferation,transform into Müller glia-derived progenitor cells,and subsequently regenerate the entire retina with restored functionality.Conversely,Müller glia in the mouse and human retina exhibit limited neural reprogramming.Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders.Müller glia reprogramming in mice has been accomplished with remarkable success,through various technologies.Advancements in molecular,genetic,epigenetic,morphological,and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice.Nevertheless,there remain issues that hinder improving reprogramming efficiency and maturity.Thus,understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency,and for developing novel Müller glia reprogramming strategies.This review describes recent progress in relatively successful Müller glia reprogramming strategies.It also provides a basis for developing new Müller glia reprogramming strategies in mice,including epigenetic remodeling,metabolic modulation,immune regulation,chemical small-molecules regulation,extracellular matrix remodeling,and cell-cell fusion,to achieve Müller glia reprogramming in mice.
基金supported by the National Natural Science Foundation of China,No.82001155(to LL)the Natural Science Foundation of Zhejiang Province,No.LY23H090004(to LL)+5 种基金the Natural Science Foundation of Ningbo,No.2023J068(to LL)the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,No.SJLY2023008(to LL)the College Students'Scientific and Technological Innovation Project(Xin Miao Talent Plan)of Zhejiang Province,No.2022R405A045(to CC)the Student ResearchInnovation Program(SRIP)of Ningbo University,Nos.20235RIP1919(to CZ),2023SRIP1938(to YZ)the K.C.Wong Magna Fund in Ningbo University。
文摘A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease.
基金the Mational Natural Science Foundation of China,No.39470776
文摘AIM: To investigate the correlation between lymphogenous metastasis and matrix metalloproteinases (MMPs) activity and the expression of Fas ligand of tumor cells in lymph nodes. METHODS: Fifty-six inbred 615-mice were equally divided into 2 groups and inoculated with Hca-F and Hca-P cells. Their lymph node metastatic rates were examined. Growth fraction of lymphocytes in host lymph nodes was detected by flow cytometry. The Hca-F and Hca-P cells were cultured with extract of lymph node, liver or spleen. The quantity of MMPs in these supernatants was examined by zymographic analysis. The expression of Fas ligand, PCNA, Bcl-2 protein of Hca-F and Hca-P cells in the mice were examined by immunohistochemistry. The apoptosis signals of macro-phages in lymph nodes were observed with in situ DNA fragmentation. RESULTS: On the 28th day post-inoculation, the lymph node metastatic rate of HcaF was 80%(16/20), whereas that of Hca-P was 25%(5/20). The growth fraction of lymphocytes was as follows: in the Hca-F cells, the proliferating peak of lymphocytes appeared on the 14th day post inoculation and then decreased rapidly, while in HcaP cells, the peak appeared on the 7th day post inoculation and then kept at a high level. With the extract of lymph node, the quantity of the MMP-9 activity increased (P【0.01) and active MMP-9 and MMP-2 were produced by both Hca-F and Hca-P tumor cells, which did not produce MMPs without the extract of lymph node or with the extracts of the liver and spleen. The expression of Fas Ligand of Hca-F cells was stronger than that of Hca-P cells (P 【0.01). The expressions of PCNA and Bcl-2 protein of Hca-F cells in the tumors of inoculated area were the same as that of Hca-P cells. In situ DNA fragmentation showed that the positive signals of macrophages were around Hca-F cells. CONCLUSION: Secretion of MMPs which was associated with metastatic ability of Hca-F and Hca-P tumor cells depends on the environment of lymph nodes. The increased expression of Fas ligand protein of Hca-F tumor cells with high lymphogenous metastatic potential in lymph nodes may help tumor cells escape from being killed by host lymphocytes.
基金Supported by The Natural Science Foundation of Yunnan Province,China, No.2007C137Mthe Joint Funds of Natural Science Foundation of Yunnan Province,China,No.2007C0009R
文摘AIM:To examine whether heme oxygenase (HO)-1 overexpression would exert direct or indirect effects on Kupffer cells activation, which lead to aggravation of reperfusion injury.METHODS: Donors were pretreated with cobalt protoporphyrin (CoPP) or zinc protoporphyrin (ZnPP), HO-1 inducer and antagonist, respectively. Livers were stored at 4℃ for 24 h before transplantation. Kupffer cells were isolated and cultured for 6 h after liver reperfusion.RESULTS: Postoperatively, serum transaminases were significantly lower and associated with less liver injury when donors were pretreated with CoPP, as compared with the ZnPP group. Production of the cytokines tumor necrosis factor-α and interleukin-6 generated by Kupffer cells decreased in the CoPP group. The CD14 expression levels (RT-PCR/Western blots) of Kupffer cells from CoPP-pretreated liver grafts reduced.CONCLUSION: The study suggests that the potential utility of HO-1 overexpression in preventing ischemia/reperfusion injury results from inhibition of Kupffer cells activation.
文摘Kupffer cells, the resident liver macrophages have long been considered as mostly scavenger cells responsible for removing particulate material from the portal circulation. However, evidence derived mostly from animal models, indicates that Kupffer cells may be implicated in the pathogenesis of various liver diseases including viral hepatitis, steatohepatitis, alcoholic liver disease, intrahepatic cholostasis, activation or rejection of the liver during liver transplantation and liver fibrosis. There is accumulating evidence, reviewed in this paper, suggesting that Kupffer cells may act both as effector cells in the destruction of hepatocytes by produdng harmful soluble mediators as well as antigen presenting cells during viral infections of the liver. Moreover they may represent a significant source of chemoattractant molecules for cytotoxic CD8 and regulatory T cells. Their role in fibrosis is well established as they are one of the main sources of TGFβ1 production, which leads to the transformation of stellate cells into myofibroblasts. Whether all these variable functions in the liver are mediated by different Kupffer cell subpopulations remains to be evaluated. In this review we propose a model that demonstrates the role of Kupffer cells in the pathogenesis of liver disease.
文摘Successful spermatogonial transplantation requires depletion of the host germ cells to allow efficient colonization of the donor spermatogonial stem cells. Although a sterilizing drug,busulfan (Myleran),is commonly used for preparing a recipient mouse before transplantation,the optimal dose of this drug has not yet been defined.The present study investigated the effects of different doses of busulfan (10-50 mg per kg body weight) on survival rate,testicular mass and histomorphology,and on the haploid spermatids and spermatozoa of male BALB/c mice.The results suggest that a dosage of 30 mg kg^-1 is optimal for the ablative treatment withbusulfan used to prepare the recipient mice. This dose results in an adequate depletion of the host germ cells for colonization of donorderived spermatogonial stem cells and causes the lowest death rate of the animals.
基金supported in part by grants from the Public Health Services Grants CA125379NIH P30 DK078392 from the National Institutes of Health,Veteran's Administration VA1001BX00080312POST12040055 from the American Heart Association Great Rivers Affiliate
文摘BACKGROUND: Ron receptor tyrosine kinase signaling in macrophages, including Kupffer cells and alveolar macrophages,suppresses endotoxin-induced proinflammatory cytokine/chemokine production. Further, we have also identified genes from Ron replete and Ron deplete livers that were differentially expressed during the progression of liver inflammation associated with acute liver failure in mice by microarray analyses.While important genes and signaling pathways have been identified downstream of Ron signaling during progression of inflammation by this approach, the precise role that Ron receptor plays in regulating the transcriptional landscape in macrophages, and particular in isolated Kupffer cells, has still not been investigated.METHODS: Kupffer cells were isolated from wild-type(TK+/+)and Ron tyrosine kinase deficient(TK-/-) mice. Ex vivo, the cells were treated with lipopolysaccharide(LPS) in the presence or absence of the Ron ligand, hepatocyte growth factor-like protein(HGFL). Microarray and qRT-PCR analyses were utilized to identify alterations in gene expression between genotypes.RESULTS: Microarray analyses identified genes expressed differentially in TK+/+ and TK-/- Kupffer cells basally as well as after HGFL and LPS treatment. Interestingly, our studies identified Mefv, a gene that codes for the anti-inflammatory protein pyrin, as an HGFL-stimulated Ron-dependent gene.Moreover, lipocalin 2, a proinflammatory gene, which is induced by LPS, was significantly suppressed by HGFL treatment.Microarray results were validated by qRT-PCR studies on Kupffer cells treated with LPS and HGFL.CONCLUSION: The studies herein suggest a novel mechanism whereby HGFL-induced Ron receptor activation promotes the expression of anti-inflammatory genes while inhibiting genes involved in inflammation with a net effect of diminished inflammation in macrophages.
文摘BACKGROUND: The non-function and dysfunction of primary liver graft likely involves dependence on Kupffer cells and hepatic innervation. The present experiment was designed to study the expression of P-selectin and intercellular adhesion molecule-1 (ICAM-1) mRNA in liver graft and to elucidate the role of Kupffer cells and the sympathetic nerve of the liver in down-regulating this expression. METHODS: Donor rats were given hexamethonium, a sympathetic ganglionic blocking agent, and/or gadolinium chloride, an inhibitor of Kupffer cells. Then the changes of graft P-selectin and ICAM-1 mRNA expression were measured after liver transplantation. RESULTS: The expressions of P-selectin and ICAM-1 mRNA were increased after liver transplantation, and down-regulated by liver denervation and elimination of Kupffer cells. CONCLUSIONS: Live donor denervation and elimination of Kupffer cells down-regulated the expressions of P-selectin and ICAM-1 mRNA in grafts. This may decrease graft ischemia/reperfusion injury.
文摘Objective To investigate a possibility of repairing damaged brain by intracerebroventricular transplantation of neural stem cells (NSCs) in the adult mice subjected to glutamate-induced excitotoxic injury. Methods Mouse NSCs were isolated from the brains of embryos at 15-day postcoitum (dpc). The expression of nestin, a special antigen for NSC, was detected by immunocytochemistry. Immunofluorescence staining was carried out to observe the survival and location of transplanted NSCs. The animals in the MSG+NSCs group received intracerebroventricular transplantation of NSCs (approximately 1.0×10^5 cells) separately on day 1 and day 10 after 10-d MSG exposure (4.0 g/kg per day). The mice in control and MSG groups received intracerebroventricular injection of Dulbecco's minimum essential medium (DMEM) instead of NSCs. On day 11 after the last NSC transplantation, the test of Y-maze discrimination learning was performed, and then the histopathology of the animal brains was studied to analyze the MSG-induced functional and morphological changes of brain and the effects of intracerebroventricular transplantation of NSCs on the brain repair. Results The isolated cells were Nestin-positive. The grafted NSCs in the host brain were region-specifically survived at 10-d post-transplantation. Intracerebroventricular transplantation of NSCs obviously facilitated the brain recovery from glutamate-induced behavioral disturbances and histopathological impairs in adult mice. Conclusion Intracerebroventricular transplantation of NSCs may be feasible in repairing diseased or damaged brain tissue.
基金Province Science Fund for Young Scholars (No. QC05C46)Science Foundation from Health Bureau of Heilongjiang Province (No. 2005-47)
文摘Purpose: The objective of this study was to investigate the anti-tumor effects and analyze the mechanism of artesunate (ART) action on breast cancer in vivo using tumor transplanted nude mice. Methods: The human breast tumor cell line MCF-7 was transplanted into nude mice, and the animals were treated with various doses of ART alone or in combination with cyclophosphamide (CTX) or normal saline (NS). The tumor inhibitory effects were observed and compared, and the ultrastructural morphology of the transplanted tumor cells was observed by electron microscopy. The apoptosis rates and cell cycle status were detected by flow cytometry (FCM). The expression of apoptosis-related proteins p53, Bcl-2, Bax and Caspase-3 were detected by immunohistochemistry and IGF-IR was detected by western blot. The expression correlation for these proteins was also analyzed. Results: The tumor inhibition rates in the low dose ART group, high dose ART group, CTX group and combined drug therapy group were (24.39±10.20)%, (40.24±7.02)%, (57.01±5.84)% and (68.29±5.1)%, respectively. The cell cycle was arrested in phase G0/Gt after treatment with ART. The expression of Bcl-2 was significantly reduced, and the expression levels of Bax and Caspase-3 were significantly increased in the ART group compared to the negative control saline group. There was no significant difference detected in p53 expression. The Bcl-2 level was negatively related to Bax and Caspase-3. The western blotting results showed IGF-IR downregulation. Conclusions: ART inhibits the growth of MCF-7 breast tumor cell xenografts in nude mice. The anti-tumor mechanism of ART for human breast carcinoma in nude mice might be correlated with the alteration of apoptosis related protein expression, which may further induce apoptosis and inhibit cell proliferation.
基金Supported by Priority Subject of Heilongjiang Science Committee, China(No.GB03C601-3)
文摘To explore the functional mechanism of Resveratrol against colon cancer cells ls174t and the growth of colon cancer tissue of tumor-bearing mice, MTT method was used to observe the functions of resveratrol for inhibition against cells ls174t in vitro. Transmission electron microscope was used to observe the cell apoptosis. FCM assay was performed to measure the change of the cell apoptosis rate and of cell cycle. RT-PCR method was used to detect the expressions of bcl-2 and bax mRNA. Western blot method was used to detect the expressions of bcl-2 and bax protein. Ceils ls174t were transplanted subcutaneously to nude mice to observe the effect of resveratrol on the growth of subcutaneously transplanted tumor, RT-PCR method was used to detect the expressions of bcl-2 and bax mRNA in the tumor tissue. Western blot method was used to detect the expressions of bcl-2 and bax protein in the tumor tissue. Resveratrol has an effect of inhibiting proliferation of cells ls174t in vitro(P〈0.01). It is able to induce the apoptosis of cells ls174t, causing the decrease in the expression of bcl-2 and the increase in the expression of bax. Resveratrol could inhibit the growth of subcutaneously transplanted tumor of nude mice(P〈0.05), causing the decrease in the expression of bcl-2 and the increase in the expression of bax. Resveratrol can inhibit the growth of cells 174t and the growth of subcutaneously transplanted tumor. The mechanism is possibly related to the induction of the cell apoptosis and the regulation of bcl-2/bax expression.