期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Polymerization of o-Phenylenediamine Catalyzed byHemeproteins Encapsulated in Reversed Micelle
1
作者 YANGYong MAOLu-yuan LILiu-zhu LIUXiao-guang SHIJun CAOShao-kui 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第2期240-243,共4页
Hemeproteins encapsulated in reversed micelle formulated with di-2-ethylhexyl sulfosuccinate(AOT) was found to catalyze the polymerization of o-phenylenediamine(o-PDA) with hydrogen peroxide, whereas o-PDA catalyzed... Hemeproteins encapsulated in reversed micelle formulated with di-2-ethylhexyl sulfosuccinate(AOT) was found to catalyze the polymerization of o-phenylenediamine(o-PDA) with hydrogen peroxide, whereas o-PDA catalyzed by hemeproteins dissolved in water could only form its trimers. As the nanostructural environment in reversed micelle acts as a certain orientation surrounding medium, it offers a strong electrostatic field that alters the reductive potential of Fe 3+/Fe 2+(E m7) in the heme of hemeproteins and thus increases the catalytic activity of peroxidase accordingly. According to the results of UV-Vis, 1H NMR and FTIR, the polymer catalyzed by hemoglobin(Hb) in reversed micelle was presumed to be constructed of lines and trapeziforms alternatively. 展开更多
关键词 HEMEPROTEIN HEMOGLOBIN Horseradish peroxidase Reversed micell O-PHENYLENEDIAMINE
下载PDF
An esterase-responsive ibuprofen nano-micelle pre-modified embryo derived nucleus pulposus progenitor cells promote the regeneration of intervertebral disc degeneration 被引量:2
2
作者 Kai-shun Xia Dong-dong Li +13 位作者 Cheng-gui Wang Li-wei Ying Jing-kai Wang Biao Yang Jia-wei Shu Xian-peng Huang Yu-ang Zhang Chao Yu Xiao-peng Zhou Fang-cai Li Nigel K.H.Slater Jian-bin Tang Qi-xin Chen Cheng-zhen Liang 《Bioactive Materials》 SCIE CSCD 2023年第3期69-85,共17页
Stem cell-based transplantation is a promising therapeutic approach for intervertebral disc degeneration(IDD).Current limitations of stem cells include with their insufficient cell source,poor proliferation capacity,l... Stem cell-based transplantation is a promising therapeutic approach for intervertebral disc degeneration(IDD).Current limitations of stem cells include with their insufficient cell source,poor proliferation capacity,low nucleus pulposus(NP)-specific differentiation potential,and inability to avoid pyroptosis caused by the acidic IDD microenvironment after transplantation.To address these challenges,embryo-derived long-term expandable nucleus pulposus progenitor cells(NPPCs)and esterase-responsive ibuprofen nano-micelles(PEG-PIB)were prepared for synergistic transplantation.In this study,we propose a biomaterial pre-modification cell strategy;the PEG-PIB were endocytosed to pre-modify the NPPCs with adaptability in harsh IDD microenvironment through inhibiting pyroptosis.The results indicated that the PEG-PIB pre-modified NPPCs exhibited inhibition of pyroptosis in vitro;their further synergistic transplantation yielded effective functional recovery,histological regeneration,and inhibition of pyroptosis during IDD regeneration.Herein,we offer a novel biomaterial pre-modification cell strategy for synergistic transplantation with promising therapeutic effects in IDD regeneration. 展开更多
关键词 Intervertebral disc degeneration Nucleus pulposus progenitor cells Esterase-responsive nano micell Biomaterial pre-modification Synergistic transplantation therapy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部