The modification and functionalization of peptides is of great significance in modern biotechnology and drug development. Here we report a highly reactive Michael-type warhead for the covalently modification of cystei...The modification and functionalization of peptides is of great significance in modern biotechnology and drug development. Here we report a highly reactive Michael-type warhead for the covalently modification of cysteine on peptide and protein. By installing a vinyl group onto a methionine residue of peptide,the produced vinyl sulfonium can be efficiently nucleophilic added by appropriate cysteine residue of this peptide, and thus yield a cyclized peptide. This peptide cyclization strategy was proven to exhibit improved cell penetration and good stability. Moreover, a peptide ligand bearing vinyl sulfonium could covalently bind to the cysteine in the target protein, indicating the potential of vinyl sulfonium as a novel warhead for developing covalent peptide inhibitor.展开更多
A couple of novel sulfobetaine copolymer is developed via Michael-type addition reaction. The comonomers, diamines and maleimide react via Michael reaction through UV irradiation using AIBN as photoinitiator producing...A couple of novel sulfobetaine copolymer is developed via Michael-type addition reaction. The comonomers, diamines and maleimide react via Michael reaction through UV irradiation using AIBN as photoinitiator producing polyamine chain. Further, sulfobetaine copolymers were obtained on treatment of the polyamine with sulfopropylating agent, 1,3-propane sultone. These novel sulfobetaine polymers were grafted on silica surface to produce responsive biocompatible surface. This easy straightforward, catalyst free facile protocol for synthesis of polymer grafted surface is useful for developing biomedical devices. Additionally, both the copolymers show fluorescence characteristics.展开更多
A facile, efficient synthesis of 3-(guaiazulen-l-yl)succinimides was developed by Michael-type addition of guaiazulene to maleimides in the presence of p-toluenesulfonic acid under mild reaction conditions.
Electrochemical oxidation of paracetamol has been studied in the presence of malononitrile as a nucleophile in a phosphate buffer solution (0.15 tool/L, pH 7), using cyclic voltammetric techniques. The results indic...Electrochemical oxidation of paracetamol has been studied in the presence of malononitrile as a nucleophile in a phosphate buffer solution (0.15 tool/L, pH 7), using cyclic voltammetric techniques. The results indicated that the N-acetyl-p-benzoquinone-imine derived from paracetamol participates in a 1,4-Michael-ts, pe addition reaction with the malononitrile to form the corresponding paracetamol derivatives (6a, 7a). The present study has led to the development of a simple, green, non-catalyst and one-pot electrochemical method with high atom economy under mild conditions.展开更多
基金financial support from the National Key Research and Development Program"Synthetic Biology"Key Special Project of China (No. 2018YFA0902504)the China Postdoctoral Science Foundation (No. 2021M690220)+7 种基金the National Natural Science Foundation of China (Nos. 21778009 and21977010)the Natural Science Foundation of Guangdong Province(Nos. 2019A1515110487, 2020A1515010522 and 2019A1515111184)the Shenzhen Science and Technology Innovation Committee (Nos. JCYJ20180507181527112, JCYJ20180508152213145, and JCYJ20170817172023838)the Foundation for Basic and Applied Research of Guangdong Province (No. 2019A1515110489)Guangdong Medical Science Foundation (No. A2021413)financial support from Beijing National Laboratory of Molecular Science Open Grant (No. BNLMS20160112)Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions (No. 2019SHIBS0004)supported by the high-performance computing platform of Peking University。
文摘The modification and functionalization of peptides is of great significance in modern biotechnology and drug development. Here we report a highly reactive Michael-type warhead for the covalently modification of cysteine on peptide and protein. By installing a vinyl group onto a methionine residue of peptide,the produced vinyl sulfonium can be efficiently nucleophilic added by appropriate cysteine residue of this peptide, and thus yield a cyclized peptide. This peptide cyclization strategy was proven to exhibit improved cell penetration and good stability. Moreover, a peptide ligand bearing vinyl sulfonium could covalently bind to the cysteine in the target protein, indicating the potential of vinyl sulfonium as a novel warhead for developing covalent peptide inhibitor.
文摘A couple of novel sulfobetaine copolymer is developed via Michael-type addition reaction. The comonomers, diamines and maleimide react via Michael reaction through UV irradiation using AIBN as photoinitiator producing polyamine chain. Further, sulfobetaine copolymers were obtained on treatment of the polyamine with sulfopropylating agent, 1,3-propane sultone. These novel sulfobetaine polymers were grafted on silica surface to produce responsive biocompatible surface. This easy straightforward, catalyst free facile protocol for synthesis of polymer grafted surface is useful for developing biomedical devices. Additionally, both the copolymers show fluorescence characteristics.
基金the Foundation of Innovation Team Project of Liaoning Education Department(No.2008T001) for financial support
文摘A facile, efficient synthesis of 3-(guaiazulen-l-yl)succinimides was developed by Michael-type addition of guaiazulene to maleimides in the presence of p-toluenesulfonic acid under mild reaction conditions.
基金Semnan University Research Council for financial supports of this work
文摘Electrochemical oxidation of paracetamol has been studied in the presence of malononitrile as a nucleophile in a phosphate buffer solution (0.15 tool/L, pH 7), using cyclic voltammetric techniques. The results indicated that the N-acetyl-p-benzoquinone-imine derived from paracetamol participates in a 1,4-Michael-ts, pe addition reaction with the malononitrile to form the corresponding paracetamol derivatives (6a, 7a). The present study has led to the development of a simple, green, non-catalyst and one-pot electrochemical method with high atom economy under mild conditions.