Wind energy provides a sustainable solution to the ever-increasing demand for energy.Micro-wind turbines offer a promising solution for low-wind speed,decentralized power generation in urban and remote areas.Earlier r...Wind energy provides a sustainable solution to the ever-increasing demand for energy.Micro-wind turbines offer a promising solution for low-wind speed,decentralized power generation in urban and remote areas.Earlier researchers have explored the design,development,and performance analysis of a micro-wind turbine system tailored for small-scale renewable energy generation.Researchers have investigated various aspects such as aerodynamic considerations,structural integrity,efficiency optimization to ensure reliable and cost-effective operation,blade design,generator selection,and control strategies to enhance the overall performance of the system.The objective of this paper is to provide a comprehensive design and performance review of horizontal and vertical micro-wind turbines.The study begins with an overview of the current landscape of wind energy across the globe and India in particular,highlighting key challenges and opportunities.Numerical and experimental studies were used to validate the designs.Horizontal Axis Wind Turbines(HAWTs)with ducts or shrouds are suitable for microscale and low-speed applications.Researchers investigated the position and location of the turbines to enhance their performance in urban settings.Airflow and airfoil noise produce aerodynamic noise,which is the most significant disadvantage of wind turbines.The findings provide valuable insights for stakeholders interested in advancing micro-wind turbine technology.The highlighted research opportunities may be pursued further to improve the efficiency,reliability,and overall performance of micro-wind turbines.展开更多
Computational Fluid Dynamics(CFD)is used here to reduce pressure loss and improve heat exchange efficiency in the recuperator associated with a gas turbine.First,numerical simulations of the high-temperature and lowte...Computational Fluid Dynamics(CFD)is used here to reduce pressure loss and improve heat exchange efficiency in the recuperator associated with a gas turbine.First,numerical simulations of the high-temperature and lowtemperature channels are performed and,the calculated results are compared with experimental data(to verify the reliability of the numerical method).Second,the flow field structure of the low-temperature side channel is critically analyzed,leading to the conclusion that the flow velocity distribution in the low-temperature side channel is uneven,and its resistance is significantly higher than that in the high-temperature side.Therefore,five alternate structural schemes are proposed for the optimization of the low-temperature side.In particular,to reduce the flow velocity in the upper channel,the rib length of each channel at the inlet of the low-temperature side region is adjusted.The performances of the 5 schemes are compared,leading to the identification of the configuration able to guarantee a uniform flow rate and minimize the pressure drop.Finally,the heat transfer performance of the optimized recuperator structure is evaluated,and it is shown that the effectiveness of the recuperator is increased by 1.5%.展开更多
In order to know about the influences of disturbance on the operating performance, the present work developed the overall dynamic simulation model of the micro gas turbine and investigated the control system under the...In order to know about the influences of disturbance on the operating performance, the present work developed the overall dynamic simulation model of the micro gas turbine and investigated the control system under the disturbances of environmental temperature and unit load. The response processes of main parameters have been obtained. It found that the compressor pressure ratio and the fuel flow rate increase in the case of natural gas being replaced by pine gas. When the system reaches a new steady state, the main parameters change to different values. The output power decreases with the declining of the air mass flow when the ambient temperature rises, the biomass gas mass flow rate increases under the regulation of the control system to maintain the output power and rotating speed in which the thermal efficiency reduces by 1.40%. The thermal efficiency enhances with the increase of output load. The control system can quickly and effectively act to maintain the key parameters at desired value.展开更多
Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines;the main reason why internal combustion engine is not convenie...Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines;the main reason why internal combustion engine is not convenient for micro power generation (5 - 30 kW) is because of their heaviness. Micro and ultra micro gas turbine devices, based on a micro compressor and a micro turbine installed on the same shaft, are more suitable for this scope for several reasons. Micro turbine systems have many advantages over reciprocating engine generators, such as higher power density (with respect to size and weight), extremely low emissions and few, or just one, moving part. Those designed with foil bearings and air-cooling operate without oil, coolants or other hazardous materials. Micro turbines also have the advantage of having the majority of their waste heat contained in their relatively high temperature exhaust. Micro turbines offer several potential advantages compared to other technologies for small-scale power generation, including: a small number of moving parts, compact size, lightweight, greater efficiency, lower emissions, lower electricity costs, and opportunities to utilize waste fuels. The object of this study is the experimental tests on a stand-alone gas turbine device with a pre-heated combustion chamber (CC), to validate the fuel consumption reduction, compared to an actual and commercial device, used on air models.展开更多
The characteristics of fuel from biomass, coal and some waste materials are lower heat value and different compositions. The lower heat value fuel (LHVF) can be used on power engine such as boiler, gas engine and gas ...The characteristics of fuel from biomass, coal and some waste materials are lower heat value and different compositions. The lower heat value fuel (LHVF) can be used on power engine such as boiler, gas engine and gas turbine. Some laboratory and pilot work have been done, but the work done on micro-gas turbine is still limited. The characteristics of LHVF can cause the operations change of micro-gas turbine designed for nature gas. Some possible adjustment and modification methods were mentioned for the use of LHVF on micro-gas turbine. One kind of representative LHVF was chosen and the operations of micro-gas turbine were analyzed. The temperature field and the non-uniformity scale of temperature distribution of combustor were calculated using FLUENT. The feasibility of different adjustment and modification methods were analyzed according to the efficiency, output power and the non-uniformity scale of temperature distribution.展开更多
In this work, the efficiency ofa 1 kWp horizontal-axis wind turbine which is installed on the roof of the engineering building at the University of Salento has been evaluated, by means of CFD (computational fluid dyn...In this work, the efficiency ofa 1 kWp horizontal-axis wind turbine which is installed on the roof of the engineering building at the University of Salento has been evaluated, by means of CFD (computational fluid dynamic) and experimental data. Particularly, the influence of the building on the micro wind turbine performance has been studied and the numerical results (wind velocity fields and turbulence intensity above the building) have been compared with the experimental data collected over a period of three years. The results have shown that horizontal-axis wind turbines suffer from wake effect due to buildings, therefore, best sites in urban area have to be identified by a careful fluid dynamic analysis aimed at evaluating all causes that can reduce significantly the performance of the generator: in fact, building should allow to exploit increased wind intensity, but often this advantage is voided by turbulence phenomena, as in the case under investigation where the measured aerogenerator efficiency is lower than the nominal performance curve. Then, the best site can be found by crossing the contours of wind velocity with the turbulence intensity fields: in this way it is possible to localize an area (best location) where the aerogenerator can give maximum performance.展开更多
The ever increasing development of portable electronics has led to a higher demand for compact and reliable power sources. Significant resources are being presently dedicated to the study of micro machined gas turbine...The ever increasing development of portable electronics has led to a higher demand for compact and reliable power sources. Significant resources are being presently dedicated to the study of micro machined gas turbines, because of their remarkable power density. The paper reports the procedures and the results of a series of tests conducted at the Department of Mechanical & Aerospace Engineering of University of Roma 1, to obtain the map of an ultra-micro gas turbine device, and the head losses and the combustion efficiency of the corresponding ultra-micro combustion chamber, fed by a mixture of butane and propane. This work is a part of a research aimed at the conception, design and prototyping of an ultra-micro thermo-electrical device for portable power generation. The novelty of the research consists in the fact that the thermal engine is a (ultra-micro) gas turbine set. In a subsequent stage, several different configurations have been assessed to select the most proper geometry and structural characteristics of the most relevant components (radial compressor, radial turbine, combustion chamber, electric motor and generator, bearings, regenerative heat exchanger).展开更多
In order to enhance catalytic combustion efficiency, a premixed hydrogen /air combustion model of the micro turbine engine is established under different excess air ratio, inlet velocity and heat transfer coefficient....In order to enhance catalytic combustion efficiency, a premixed hydrogen /air combustion model of the micro turbine engine is established under different excess air ratio, inlet velocity and heat transfer coefficient. And effects of inlet velocity, excess air coefficient and heat transfer coefficient on the catalytic combustion efficiency of the hydrogen have been analyzed by the FLUENT with CHEMKIN reaction mechanisms and the fuzzy grey relation theory. It is showed that inlet velocity has a more intuitive influence on the catalytic combustion efficiency of the hydrogen. A higher efficiency can be obtained with a lower inlet velocity. The optimum excess air coefficient is in the range of 0.94 to 1.0, the catalytic combustion efficiency of the hydrogen will be declined if the excess air coefficient exceeded 1.0. The effect of heat transfer coefficient on the catalytic combustion efficiency of the hydrogen mainly embodies in the case of the excess air coefficient exceeded 1.0, however, the effect will be declined if the heat transfer coefficient exceeded 4.0. The fuzzy grey relation degrees of the inlet velocity, heat transfer coefficient and excess air coefficient on the catalytic combustion efficiency of the hydrogen are 0.640945, 0.633214 and 0.547892 respectively.展开更多
Research is being conducted to study the effects of particulate deposition from contaminants in coal synthesis gas (syngas) on the mechanical properties of thermal barrier coatings (TBC) employed on integrated gasific...Research is being conducted to study the effects of particulate deposition from contaminants in coal synthesis gas (syngas) on the mechanical properties of thermal barrier coatings (TBC) employed on integrated gasification combined cycle (IGCC) turbine hot section airfoils. West Virginia University (WVU) had been working with US Department of Energy, National Energy Technology Laboratory (NETL) to simulate deposition on the pressure side of an IGCC turbine first stage vane. To model the deposition, coal fly ash was injected into the flow of a combustor facility and deposited onto TBC coated, angled film-cooled test articles in a high pressure (approximately 4 atm) and a high temperature (1560 K) environment. To investigate the interaction between the deposition and the TBC, a load-based multiple-partial unloading micro-indentation technique was used to quantitatively evaluate the mechanical properties of materials. The indentation results showed the Young’s Modulus of the ceramic top coat was higher in areas with deposition formation due to the penetration of the fly ash. This corresponds with the reduction of strain tolerance of the 7% yttria-stabilized zirconia (7YSZ) coatings.展开更多
Major problem with grid tied micro wind turbine is synchronization and wind variability. Due to this problem the stability of available grid gets reduced. The stability can be achieved by output power control of the t...Major problem with grid tied micro wind turbine is synchronization and wind variability. Due to this problem the stability of available grid gets reduced. The stability can be achieved by output power control of the turbine. Major part of many countries like India, the annual mean wind speed is not high. The rated wind speed of turbine remain around 11 m/s and cut in is around 3.5 m/s. Due to this problem we aimed to develop a sustainable wind energy system that can provide stable power supply even at the locations of low wind speed of 2 - 4 m/s. To address this issue, a momentary impulse or external torque to the rotor by external motor is one of the good options to maintain the momentum of blades and thus provide stability for sufficient time. Various theoretical calculations and experiments are conducted on the above method. This would increase the output power and also the efficiency of wind turbine. We show that Return-On-Investment will be high as compared with other grid connected turbines. Our proposed concept in the present study, if implemented properly, can help the installation of number of wind turbines even at domestic level. It also makes the consumers energy independent and promotes the use of wind as a source of energy and may enter as a rooftop energy supply system similar to solar.展开更多
In this modern era, power generation seems to be a very demanding factor. New models and methods have been proposed to derive from various natural and manmade resources. In such instances, this paper gives a detailed ...In this modern era, power generation seems to be a very demanding factor. New models and methods have been proposed to derive from various natural and manmade resources. In such instances, this paper gives a detailed report on the power generation from Micro Turbines. Micro turbine plays a very important role in electric power generation. Especially they are used in the combined cycle process power plants. The parameters of Rowen’s model 265-MW single shaftheavy duty gas turbines which are used in dynamic studies are estimated in this paper using the operational and performance data. These data are also used to briefly explain the extraction of parameters of the used model. Micro turbine parameters are approximated using simple thermodynamics assumptions. Micro turbine power generation seems to be an uprising and a promising source and an exact design with a perfect model is capable of producing the highest efficiency. Thus this paper is proposed on the aspects of social awareness to elaborate the control design of Micro Turbine Power Generation System. The parameters of micro turbine models are derived and the results of several simulated tests using Matlab/Simulink are presented.展开更多
In this paper, the development of a vertical axis hydrokinetic twin turbine for harvesting energy from flowing water in man-made channels is described. The Technology Readiness Level (TRL) assessment procedure, develo...In this paper, the development of a vertical axis hydrokinetic twin turbine for harvesting energy from flowing water in man-made channels is described. The Technology Readiness Level (TRL) assessment procedure, developed by NASA and modified by the US Department of Energy, is followed and it is shown that the hydrokinetic turbine successfully reaches TRL 7, which is a full-scale, similar (prototypical) system demonstrated in a relevant environment. The concept of the twin turbine (TRL 1 - 3) is first validated and tested using a 1:10 scale laboratory model at Cardiff University and efficiencies of up to 75% are achieved (TRL 4 - 5). In order to justify system functionality and performance in a relevant environment as well as up-scalability, a 1:3 scale model of the twin turbine is implemented and tested in a discharge channel of a water treatment plant in Atlanta, thereby achieving TRL6. This paved the way for an application in the form of an array of ten full-scale twin turbine prototypes, including all relevant components such as housing, drive-train, gear-box and generator. Successful deployment and testing in the South Boulder Canal near Denver means that the hydrokinetic twin turbine system reached TRL7.展开更多
The purpose of this paper is to analyze the flow field on the propulsion nozzle of a micro-turbojet engine in function of the velocity. The 2D axisymmetric numerical simulation was made by using commercial software FL...The purpose of this paper is to analyze the flow field on the propulsion nozzle of a micro-turbojet engine in function of the velocity. The 2D axisymmetric numerical simulation was made by using commercial software FLUENT?. A micro-turbojet engine was also employed for this study and it has the following characteristics: 100 N thrust, 130,000 rpm, mass flow rate 0.2650 kg/s, weight 1.2 kg. This engine is operating in Mexico city under the following conditions: P0, 78,000 Pa T0, 300 K, πc, 2.1 and a turbine entry temperature of 1000 K;it is considered that the nozzle is not choked. For this study, the viscous standard k- model, a semi-empirical model based on transport model equations for the turbulent kinetic energy (k) and its dissipation rate, is used. The transport model equation for k is derived from the ex-act equation, while the transport model equation for is obtained by using physical reasoning and bears resemblance to its mathematically exact counterpart. The employed grids are structured and the boundary conditions are obtained from a thermodynamic analysis. The results that are obtained show an increment of the velocity of 6.25% to the exit propulsion nozzle.展开更多
Modeling of the roughness in micro-nano scale and its influence have not been fully investigated, however the roughness will cause amplitude and phase errors of the radiating slot, and decrease the precision and effic...Modeling of the roughness in micro-nano scale and its influence have not been fully investigated, however the roughness will cause amplitude and phase errors of the radiating slot, and decrease the precision and efficiency of the SWA in Ku-band. Firstly, the roughness is simulated using the electromechanical coupled(EC) model. The relationship between roughness and the antenna's radiation properties is obtained. For verification, an antenna proto- type is manufactured and tested, and the simulation method is introduced. According to the prototype, a contrasting experiment dealing with the flatness of the radiating plane is conducted to test the simulation method. The advantage of the EC model is validated by comparisons of the EC model and two classical roughness models (sine wave and fractal function), which shows that the EC model gives a more accurate description model for roughness, the maxi- mum error is 13%. The existence of roughness strongly broadens the beamwidth and raises the side-lobe level of SWA, which is 1.2 times greater than the ideal antenna. In addition, effect of the EC model's evaluation indices is investigated, the most affected scale of the roughness is found, which is 1/10 of the working wavelength. The proposed research provides the instruction for antenna designing and manufacturing.展开更多
Using metallographic observation and mechanical measurement,the microstructure and mechanical properties of GH4169G alloy has been investigated.The effect of the phosphorus,boron trace elements on mechanical propertie...Using metallographic observation and mechanical measurement,the microstructure and mechanical properties of GH4169G alloy has been investigated.The effect of the phosphorus,boron trace elements on mechanical properties of the GH4169G alloy are compared and analyzed.The results showed that the hot-workability of the GH4169G alloy is very good.The stress ruptures properties of GH4169G alloy is over 3 times than the traditional GH4169 alloy.展开更多
文摘Wind energy provides a sustainable solution to the ever-increasing demand for energy.Micro-wind turbines offer a promising solution for low-wind speed,decentralized power generation in urban and remote areas.Earlier researchers have explored the design,development,and performance analysis of a micro-wind turbine system tailored for small-scale renewable energy generation.Researchers have investigated various aspects such as aerodynamic considerations,structural integrity,efficiency optimization to ensure reliable and cost-effective operation,blade design,generator selection,and control strategies to enhance the overall performance of the system.The objective of this paper is to provide a comprehensive design and performance review of horizontal and vertical micro-wind turbines.The study begins with an overview of the current landscape of wind energy across the globe and India in particular,highlighting key challenges and opportunities.Numerical and experimental studies were used to validate the designs.Horizontal Axis Wind Turbines(HAWTs)with ducts or shrouds are suitable for microscale and low-speed applications.Researchers investigated the position and location of the turbines to enhance their performance in urban settings.Airflow and airfoil noise produce aerodynamic noise,which is the most significant disadvantage of wind turbines.The findings provide valuable insights for stakeholders interested in advancing micro-wind turbine technology.The highlighted research opportunities may be pursued further to improve the efficiency,reliability,and overall performance of micro-wind turbines.
基金supported by the Scientific Problem Tackling Program of Science and Technology Commission of Shanghai Municipality(18DZ1202000)the Shanghai Local University Project“Research and Application of Key Technologies of New Efficient Micro Gas Turbine System”(No.19020500900).
文摘Computational Fluid Dynamics(CFD)is used here to reduce pressure loss and improve heat exchange efficiency in the recuperator associated with a gas turbine.First,numerical simulations of the high-temperature and lowtemperature channels are performed and,the calculated results are compared with experimental data(to verify the reliability of the numerical method).Second,the flow field structure of the low-temperature side channel is critically analyzed,leading to the conclusion that the flow velocity distribution in the low-temperature side channel is uneven,and its resistance is significantly higher than that in the high-temperature side.Therefore,five alternate structural schemes are proposed for the optimization of the low-temperature side.In particular,to reduce the flow velocity in the upper channel,the rib length of each channel at the inlet of the low-temperature side region is adjusted.The performances of the 5 schemes are compared,leading to the identification of the configuration able to guarantee a uniform flow rate and minimize the pressure drop.Finally,the heat transfer performance of the optimized recuperator structure is evaluated,and it is shown that the effectiveness of the recuperator is increased by 1.5%.
文摘In order to know about the influences of disturbance on the operating performance, the present work developed the overall dynamic simulation model of the micro gas turbine and investigated the control system under the disturbances of environmental temperature and unit load. The response processes of main parameters have been obtained. It found that the compressor pressure ratio and the fuel flow rate increase in the case of natural gas being replaced by pine gas. When the system reaches a new steady state, the main parameters change to different values. The output power decreases with the declining of the air mass flow when the ambient temperature rises, the biomass gas mass flow rate increases under the regulation of the control system to maintain the output power and rotating speed in which the thermal efficiency reduces by 1.40%. The thermal efficiency enhances with the increase of output load. The control system can quickly and effectively act to maintain the key parameters at desired value.
文摘Current portable power generators are mainly based on internal combustion engine since they present higher values of efficiency comparing to other engines;the main reason why internal combustion engine is not convenient for micro power generation (5 - 30 kW) is because of their heaviness. Micro and ultra micro gas turbine devices, based on a micro compressor and a micro turbine installed on the same shaft, are more suitable for this scope for several reasons. Micro turbine systems have many advantages over reciprocating engine generators, such as higher power density (with respect to size and weight), extremely low emissions and few, or just one, moving part. Those designed with foil bearings and air-cooling operate without oil, coolants or other hazardous materials. Micro turbines also have the advantage of having the majority of their waste heat contained in their relatively high temperature exhaust. Micro turbines offer several potential advantages compared to other technologies for small-scale power generation, including: a small number of moving parts, compact size, lightweight, greater efficiency, lower emissions, lower electricity costs, and opportunities to utilize waste fuels. The object of this study is the experimental tests on a stand-alone gas turbine device with a pre-heated combustion chamber (CC), to validate the fuel consumption reduction, compared to an actual and commercial device, used on air models.
文摘The characteristics of fuel from biomass, coal and some waste materials are lower heat value and different compositions. The lower heat value fuel (LHVF) can be used on power engine such as boiler, gas engine and gas turbine. Some laboratory and pilot work have been done, but the work done on micro-gas turbine is still limited. The characteristics of LHVF can cause the operations change of micro-gas turbine designed for nature gas. Some possible adjustment and modification methods were mentioned for the use of LHVF on micro-gas turbine. One kind of representative LHVF was chosen and the operations of micro-gas turbine were analyzed. The temperature field and the non-uniformity scale of temperature distribution of combustor were calculated using FLUENT. The feasibility of different adjustment and modification methods were analyzed according to the efficiency, output power and the non-uniformity scale of temperature distribution.
文摘In this work, the efficiency ofa 1 kWp horizontal-axis wind turbine which is installed on the roof of the engineering building at the University of Salento has been evaluated, by means of CFD (computational fluid dynamic) and experimental data. Particularly, the influence of the building on the micro wind turbine performance has been studied and the numerical results (wind velocity fields and turbulence intensity above the building) have been compared with the experimental data collected over a period of three years. The results have shown that horizontal-axis wind turbines suffer from wake effect due to buildings, therefore, best sites in urban area have to be identified by a careful fluid dynamic analysis aimed at evaluating all causes that can reduce significantly the performance of the generator: in fact, building should allow to exploit increased wind intensity, but often this advantage is voided by turbulence phenomena, as in the case under investigation where the measured aerogenerator efficiency is lower than the nominal performance curve. Then, the best site can be found by crossing the contours of wind velocity with the turbulence intensity fields: in this way it is possible to localize an area (best location) where the aerogenerator can give maximum performance.
文摘The ever increasing development of portable electronics has led to a higher demand for compact and reliable power sources. Significant resources are being presently dedicated to the study of micro machined gas turbines, because of their remarkable power density. The paper reports the procedures and the results of a series of tests conducted at the Department of Mechanical & Aerospace Engineering of University of Roma 1, to obtain the map of an ultra-micro gas turbine device, and the head losses and the combustion efficiency of the corresponding ultra-micro combustion chamber, fed by a mixture of butane and propane. This work is a part of a research aimed at the conception, design and prototyping of an ultra-micro thermo-electrical device for portable power generation. The novelty of the research consists in the fact that the thermal engine is a (ultra-micro) gas turbine set. In a subsequent stage, several different configurations have been assessed to select the most proper geometry and structural characteristics of the most relevant components (radial compressor, radial turbine, combustion chamber, electric motor and generator, bearings, regenerative heat exchanger).
基金Project(51776062) supported by the National Natural Science Foundation of ChinaProject(201208430262) supported by the National Studying Abroad Foundation Project of the China Scholarship Council
文摘In order to enhance catalytic combustion efficiency, a premixed hydrogen /air combustion model of the micro turbine engine is established under different excess air ratio, inlet velocity and heat transfer coefficient. And effects of inlet velocity, excess air coefficient and heat transfer coefficient on the catalytic combustion efficiency of the hydrogen have been analyzed by the FLUENT with CHEMKIN reaction mechanisms and the fuzzy grey relation theory. It is showed that inlet velocity has a more intuitive influence on the catalytic combustion efficiency of the hydrogen. A higher efficiency can be obtained with a lower inlet velocity. The optimum excess air coefficient is in the range of 0.94 to 1.0, the catalytic combustion efficiency of the hydrogen will be declined if the excess air coefficient exceeded 1.0. The effect of heat transfer coefficient on the catalytic combustion efficiency of the hydrogen mainly embodies in the case of the excess air coefficient exceeded 1.0, however, the effect will be declined if the heat transfer coefficient exceeded 4.0. The fuzzy grey relation degrees of the inlet velocity, heat transfer coefficient and excess air coefficient on the catalytic combustion efficiency of the hydrogen are 0.640945, 0.633214 and 0.547892 respectively.
文摘Research is being conducted to study the effects of particulate deposition from contaminants in coal synthesis gas (syngas) on the mechanical properties of thermal barrier coatings (TBC) employed on integrated gasification combined cycle (IGCC) turbine hot section airfoils. West Virginia University (WVU) had been working with US Department of Energy, National Energy Technology Laboratory (NETL) to simulate deposition on the pressure side of an IGCC turbine first stage vane. To model the deposition, coal fly ash was injected into the flow of a combustor facility and deposited onto TBC coated, angled film-cooled test articles in a high pressure (approximately 4 atm) and a high temperature (1560 K) environment. To investigate the interaction between the deposition and the TBC, a load-based multiple-partial unloading micro-indentation technique was used to quantitatively evaluate the mechanical properties of materials. The indentation results showed the Young’s Modulus of the ceramic top coat was higher in areas with deposition formation due to the penetration of the fly ash. This corresponds with the reduction of strain tolerance of the 7% yttria-stabilized zirconia (7YSZ) coatings.
文摘Major problem with grid tied micro wind turbine is synchronization and wind variability. Due to this problem the stability of available grid gets reduced. The stability can be achieved by output power control of the turbine. Major part of many countries like India, the annual mean wind speed is not high. The rated wind speed of turbine remain around 11 m/s and cut in is around 3.5 m/s. Due to this problem we aimed to develop a sustainable wind energy system that can provide stable power supply even at the locations of low wind speed of 2 - 4 m/s. To address this issue, a momentary impulse or external torque to the rotor by external motor is one of the good options to maintain the momentum of blades and thus provide stability for sufficient time. Various theoretical calculations and experiments are conducted on the above method. This would increase the output power and also the efficiency of wind turbine. We show that Return-On-Investment will be high as compared with other grid connected turbines. Our proposed concept in the present study, if implemented properly, can help the installation of number of wind turbines even at domestic level. It also makes the consumers energy independent and promotes the use of wind as a source of energy and may enter as a rooftop energy supply system similar to solar.
文摘In this modern era, power generation seems to be a very demanding factor. New models and methods have been proposed to derive from various natural and manmade resources. In such instances, this paper gives a detailed report on the power generation from Micro Turbines. Micro turbine plays a very important role in electric power generation. Especially they are used in the combined cycle process power plants. The parameters of Rowen’s model 265-MW single shaftheavy duty gas turbines which are used in dynamic studies are estimated in this paper using the operational and performance data. These data are also used to briefly explain the extraction of parameters of the used model. Micro turbine parameters are approximated using simple thermodynamics assumptions. Micro turbine power generation seems to be an uprising and a promising source and an exact design with a perfect model is capable of producing the highest efficiency. Thus this paper is proposed on the aspects of social awareness to elaborate the control design of Micro Turbine Power Generation System. The parameters of micro turbine models are derived and the results of several simulated tests using Matlab/Simulink are presented.
文摘In this paper, the development of a vertical axis hydrokinetic twin turbine for harvesting energy from flowing water in man-made channels is described. The Technology Readiness Level (TRL) assessment procedure, developed by NASA and modified by the US Department of Energy, is followed and it is shown that the hydrokinetic turbine successfully reaches TRL 7, which is a full-scale, similar (prototypical) system demonstrated in a relevant environment. The concept of the twin turbine (TRL 1 - 3) is first validated and tested using a 1:10 scale laboratory model at Cardiff University and efficiencies of up to 75% are achieved (TRL 4 - 5). In order to justify system functionality and performance in a relevant environment as well as up-scalability, a 1:3 scale model of the twin turbine is implemented and tested in a discharge channel of a water treatment plant in Atlanta, thereby achieving TRL6. This paved the way for an application in the form of an array of ten full-scale twin turbine prototypes, including all relevant components such as housing, drive-train, gear-box and generator. Successful deployment and testing in the South Boulder Canal near Denver means that the hydrokinetic twin turbine system reached TRL7.
文摘The purpose of this paper is to analyze the flow field on the propulsion nozzle of a micro-turbojet engine in function of the velocity. The 2D axisymmetric numerical simulation was made by using commercial software FLUENT?. A micro-turbojet engine was also employed for this study and it has the following characteristics: 100 N thrust, 130,000 rpm, mass flow rate 0.2650 kg/s, weight 1.2 kg. This engine is operating in Mexico city under the following conditions: P0, 78,000 Pa T0, 300 K, πc, 2.1 and a turbine entry temperature of 1000 K;it is considered that the nozzle is not choked. For this study, the viscous standard k- model, a semi-empirical model based on transport model equations for the turbulent kinetic energy (k) and its dissipation rate, is used. The transport model equation for k is derived from the ex-act equation, while the transport model equation for is obtained by using physical reasoning and bears resemblance to its mathematically exact counterpart. The employed grids are structured and the boundary conditions are obtained from a thermodynamic analysis. The results that are obtained show an increment of the velocity of 6.25% to the exit propulsion nozzle.
基金Supported by National Natural Science Foundation of China(Grant Nos.51305322,51405364,51475348)
文摘Modeling of the roughness in micro-nano scale and its influence have not been fully investigated, however the roughness will cause amplitude and phase errors of the radiating slot, and decrease the precision and efficiency of the SWA in Ku-band. Firstly, the roughness is simulated using the electromechanical coupled(EC) model. The relationship between roughness and the antenna's radiation properties is obtained. For verification, an antenna proto- type is manufactured and tested, and the simulation method is introduced. According to the prototype, a contrasting experiment dealing with the flatness of the radiating plane is conducted to test the simulation method. The advantage of the EC model is validated by comparisons of the EC model and two classical roughness models (sine wave and fractal function), which shows that the EC model gives a more accurate description model for roughness, the maxi- mum error is 13%. The existence of roughness strongly broadens the beamwidth and raises the side-lobe level of SWA, which is 1.2 times greater than the ideal antenna. In addition, effect of the EC model's evaluation indices is investigated, the most affected scale of the roughness is found, which is 1/10 of the working wavelength. The proposed research provides the instruction for antenna designing and manufacturing.
文摘Using metallographic observation and mechanical measurement,the microstructure and mechanical properties of GH4169G alloy has been investigated.The effect of the phosphorus,boron trace elements on mechanical properties of the GH4169G alloy are compared and analyzed.The results showed that the hot-workability of the GH4169G alloy is very good.The stress ruptures properties of GH4169G alloy is over 3 times than the traditional GH4169 alloy.