Machining experiment of micro channel structure with 6:4 brass was carried out by shaping process using a single crystal diamond tool. FEM simulation using solid cantilever beam model was analyzed. In result of experi...Machining experiment of micro channel structure with 6:4 brass was carried out by shaping process using a single crystal diamond tool. FEM simulation using solid cantilever beam model was analyzed. In result of experiment, tool deflection is observed as machining characteristics through result of experiments such as surface roughness, cutting force and burr formations. And the influence of tool deflection is experimentally proved.展开更多
In this research,a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated.A simple coordinate transformation to transform wavy surface to a ...In this research,a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated.A simple coordinate transformation to transform wavy surface to a flat surface is employed.A cubic spline collocation numerical method is employed to analyze transformed equations.The effect of various parameters such as Reynolds number,volume fraction 0-,Hartmann number,and amplitude of wave length was evaluated in improving the performance of a wavy microchannel.According to the presented results,the sinusoidal shape of the microchannel has a direct impact on heat transfer.By increasing the microchannel wave amplitude,the Nusselt number has risen.On the other hand,increasing the heat transfer in the higher wavelength ratio corrugated channel is seen as an effective method of increasing the heat transfer,especially at higher Reynolds numbers.The results showed that with increasing Hartmann numbers,the flow line near thewall becomesmore regular and,according to the temperature gradient created,theNusselt number growth.展开更多
Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attenti...Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.展开更多
In order to reduce or avoid the fluctuations from interface breakup, a meandering microchannel with curved multi-bends(44 turns) is fabricated, and investigations of scaling bubble/slug length in Taylor flow in a rect...In order to reduce or avoid the fluctuations from interface breakup, a meandering microchannel with curved multi-bends(44 turns) is fabricated, and investigations of scaling bubble/slug length in Taylor flow in a rectangular meandering microchannel are systematically conducted. Based on considerable experimental data,quantitative analyses for the influences of two important characteristic times, liquid phase physical properties and aspect ratio are made on the prediction criteria for the bubble/slug length of Taylor flow in a meandering microchannel. A simple principle is suggested to predict the bubble formation period by using the information of Rayleigh time and capillary time for six gas–liquid systems with average deviation of 10.96%. Considering physical properties of the liquid phase and cross-section configuration of the rectangular mcirochannel,revised scaling laws for bubble length are established by introducing Ca, We, Re and W/h whether for the squeezing-driven or shearing-driven of bubble break. In addition, a simple principle in terms of Garstecki-type model and bubble formation period is set-up to predict slug lengths. A total of 107 sets of experimental data are correlated with the meandering microchannel and operating range: 0.001 b CaTPb 0.05, 0.06 b WeTPb 9.0,18 b ReTPb 460 using the bubble/slug length prediction equation from current work. The average deviation between the correlated data and the experimental data for bubble length and slug length is about 9.42% and9.95%, respectively.展开更多
The algorithm of gaseous flow in bi-dimensional micro-channels is set up andthe corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels isnumerically analyzed and the pressure dro...The algorithm of gaseous flow in bi-dimensional micro-channels is set up andthe corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels isnumerically analyzed and the pressure drop along the duct as well .as the velocity profile in themicro-channels is obtained. The numerical results agreed well with the experimental results in thereferences. Moreover, the effects of Kn, sigma_v and Re on the velocity profiles are analyzed. It isfound that for Kn>0.001, with increasing Kn number, the slip velocity on the wall boundaryincreases; the tangential momentum coefficient sigma_v affects the slip velocity greatly. The slipvelocity increases with decreasing a, In the slip flow regime and for low Re numbers, the slipvelocity is little influenced by the Re number.展开更多
Numerical simulation using the finite differential method was carried out to analyze the diffusion of an impulse sample in the micro-channel driven by electroosmosis. The results show that the electrical field strengt...Numerical simulation using the finite differential method was carried out to analyze the diffusion of an impulse sample in the micro-channel driven by electroosmosis. The results show that the electrical field strength applied externally and the concentration of buffer solution play a significant role in the diffusion of sample, however, hydraulic diameter and aspect ratio of height to width of channel play a small role in it. Weakening the electrical field strength applied externally and the concentration of buffer solution properly can prevent the sample band from broadening effectively, and promote the efficiency of testing and separation as well as keep a faster speed of transport. The conclusions are helpful to the optimal design for micro-channel.展开更多
In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the move...In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the movement of single molecule within micro-/submicro-fluidic channels, the characteristics of current signals at the initial stage of the flow are systematically studied based on a three-electrode system. The current response of micro-/submicro-fluidic channels filled with different electrolyte solutions in non-continuous external electric field are investigated. It is found, there always exists a current reversal phenomenon, which is an inherent property of the current signals in micro/submicro-fluidics Each solution has an individual critical voltage under which the steady current value is equal to zero The interaction between the steady current and external applied voltage follows an exponential function. All these results can be attributed to the overpotentials of the electric double layer on the electrodes. These results are helpful for the design and fabrication of functional micro/nano-scale fluidic sensors and biochips.展开更多
Gas flow in a micro-channel usually has a high Knudsen number. The predominant predictive tool for such a microflow is the direct simulation Monte Carlo(DSMC) method, which is used in this paper to investigate primary...Gas flow in a micro-channel usually has a high Knudsen number. The predominant predictive tool for such a microflow is the direct simulation Monte Carlo(DSMC) method, which is used in this paper to investigate primary flow properties of supersonic gas in a circular micro-channel for different inflow conditions, such as free stream at different altitudes, with different incoming Mach numbers, and with different angles of attack. Simulation results indicate that the altitude and free stream incoming Mach number have a significant effect on the whole micro-channel flow field, whereas the angle of attack mainly affects the entrance part of micro-channel flow field. The fundamental mechanism behind the simulation results is also presented. With the increase of altitude, thr free stream would be partly prevented from entering into micro-channel.Meanwhile, the gas flow in micro-channel is decelerated, and the increase in the angle of attack also decelerates the gas flow. In contrast, gas flow in micro-channel is accelerated as free stream incoming Mach number increases. A noteworthy finding is that the rarefaction effects can become very dominant when the free stream incoming Mach number is low. In other words, a free stream with a larger incoming velocity is able to reduce the influence of the rarefaction effects on gas flow in the micro-channel.展开更多
Blood cells are mainly(~99%)comprised of red blood cells.The most remarkable properties of are their high deformability,which allow they flow through microcapillaries of diameter even smaller than their size.The RBC’...Blood cells are mainly(~99%)comprised of red blood cells.The most remarkable properties of are their high deformability,which allow they flow through microcapillaries of diameter even smaller than their size.The RBC’s remarkable mechanical properties originate from the unique architecture of its membrane.To study the mechanism of RBC’s deformability,a commonly adopted approach is to localize the cytoskeleton protein by immunofluorescence,followed by exploring the changes of cytoskeleton protein during cell deformation.During this process,the fixed treatment of RBC using GA and PFA is of great importance.However,RBC’s deformability is reduced by the fixation process and skeletal protein of membrane is changed accordingly.The flow behavior of red RBCs through the microchannel also changed.Given the difficulty of observing RBC flow in vivo,in vitro simulation by virtue of microfluidic devices provides a feasible alternative.An important physiological phenomenon of the blood flow is the formation of cell free layer(CFL),with RBCs show a tendency to concentrate towards the central axis of the pipeline and move faster than the plasma layer.However,this phenomena is weaken if the stiffness of the membrane increase,which occurs in some disease,such as hereditary spherocytosis and hereditary elliptocytosis.To study the effects of GA and PFA fix treatment on RBC deformability,a microfluidic platform is employed to measuring the CFL and flow velocity of blood flow in this work.The PDMS micro flow channel used is 100 micrometers in width and 50 micrometers in deep.The RBC suspension is fed into the flow channel by the injection pump(NE-1000.USA),and the experiments are observed and recorded by the inverted microscope(IX70,Olympus,Japan)and high-speed camera(Memrecam GX-1,NAC,Japan)system.Three GA concentrations,i.e.,0.000 5,0.000 75,and 0.001 wt.%were used.Meanwhile,the effect of PFA at a concentration of 2wt.%work with GA was also investigated.Images of the flowing RBCs are processed mainly based on Memrecam GXLink.The results show that,the diameter of the RBC be treated is bigger and the shape of the RBC is became more flat after treated.Some of RBCs lost their biconcave structure.When the RBC suspension with 5%Hct flow in the microchannel,the CFL thickness decrease after being treated.And with concentrations of GA increase,the CFL thickness become thinner.The CFL thickness decrease significantly when GA and 2 wt.%PFA work combined.The velocity of RBCs decreases after treated with the GA or/and 2wt.%PFA.GA is known to relieve the dissolution of red blood cells during fluorescence labeling.On the other hand,the crosslinking of the aldehyde group(-cho)of GA with the amino group(-nh2)of RBC membrane protein will change the conformation of the membrane protein and its visco-elastic properties in turn.Then,the transparent fluidity orrheology characteristics of RBC is altered.Since GA and PFA are commonly used to immobilize red blood cells and keep the fluorescence constant,and PFA works similarly as GA,as a result,the variation of membrane protein conformation is intensified,and the membrane becomes stiffer.展开更多
A fully developed steady immiscible flow of nanofluid in a two-layer microchannel is studied in the presence of electro-kinetic effects.Buongiorno’s model is employed for describing the behavior of nanofluids.Differe...A fully developed steady immiscible flow of nanofluid in a two-layer microchannel is studied in the presence of electro-kinetic effects.Buongiorno’s model is employed for describing the behavior of nanofluids.Different from the previous studies on two-layer channel flow of a nanofluid,the present paper introduces the flux conservation conditions for the nanoparticle volume fraction field,which makes this work new and unique,and it is in coincidence with practical observations.The governing equations are reduced into a group of ordinary differential equations via appropriate similarity transformations.The highly accurate analytical approximations are obtained.Important physical quantities and total entropy generation are analyzed and discussed.A comparison is made to determine the significance of electrical double layer(EDL)effects in the presence of an external electric field.It is found that the Brownian diffusion,the thermophoresis diffusion,and the viscosity have significant effects on altering the flow behaviors.展开更多
In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included i...In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included in the injection molding the macro-component with a micro-channel. In this case, a simplified model is used to analyze the flow behaviors of the macro-sized part within a micro-channel. The flow behaviors in the macro-cavity are estimated by using the finite element and finite difference methods. The influence of the injection rate, micro-channel size, heat transfer coefficient, and mold temperature on the flowing distance is investigated based on the non-isothermal analytic method. The results show that an increase in the radius of the micro-channel and mold temperature can improve effectively the flowing distance in the micro-channel.展开更多
Light propagation through a channel filter based on two-dimensional photonic crystals with elliptical-rod defects is studied by the finite-difference time-domain method. Shape alteration of the defects from the usual ...Light propagation through a channel filter based on two-dimensional photonic crystals with elliptical-rod defects is studied by the finite-difference time-domain method. Shape alteration of the defects from the usual circle to an ellipse offers a powerful approach to engineer the resonant frequency of channel filters. It is found that the resonant frequency can be flexibly adjusted by just changing the orientation angle of the elliptical defects. The sensitivity of the resonant wavelength to the alteration of the oval rods' shape is also studied. This kind of multi-channel filter is very suitable for systems requiring a large number of output channel filters.展开更多
The existing research of the flow behavior in emitter micro-channels mainly focuses on the single-phase flow behavior.And the recent micro-particle image velocimetry(PIV) experimental research on the flow characteri...The existing research of the flow behavior in emitter micro-channels mainly focuses on the single-phase flow behavior.And the recent micro-particle image velocimetry(PIV) experimental research on the flow characteristics in various micro-channels mainly focuses on the single-phase fluid flow.However,using an original-size emitter prototype to perform the experiments on the two-phase flow characteristics of the labyrinth channels is seldom reported.In this paper,the practical flow of water,mixed with sand escaped from filtering,in the labyrinth channel,is investigated.And some research work on the clogging mechanism of the labyrinth channel's structure is conducted.Computational fluid dynamics(CFD) analysis has been performed on liquid-solid two-phase flow in labyrinth-channel emitters.Based on flow visualization technology-micro-PIV,the flow in labyrinth channel has been photographed and recorded.The path line graph and velocity vector graph are obtained through the post-treatment of experimental results.The graphs agree well with CFD analysis results,so CFD analysis can be used in optimal design of labyrinth-channel emitters.And the optimized anti-clogging structures of the rectangular channel and zigzag channel have been designed here.The CFD numerical simulation and the micro-PIV experiments analysis on labyrinth-channel emitter,make the "black box" of the flow behavior in the emitter channel broken.Furthermore,the proposed research promotes an advanced method to evaluate the emitter's performance and can be used to conducting the optimal design of the labyrinth-channel emitters.展开更多
A novel fabrication process for micro patterns with curvature was introduced. The curved structures were made by compensating rectangular micro structures with liquid photoresist layer. Because of the surface tension ...A novel fabrication process for micro patterns with curvature was introduced. The curved structures were made by compensating rectangular micro structures with liquid photoresist layer. Because of the surface tension of the liquid in micro scale, various shapes of meniscus can he made on the micro channels. The micro channels were made on the silicon suhstrate in advance, and then the liquid layer was coated on the micro channels. From the nature of liquid behavior, the curved patterns with smooth surface are obtained, which cannot be made easily with the conventional mechanical machining, as well as with the microfabrication processes, such as wet and dry etching. With this principle, it is expected that the smooth and curved surfaces can be made by simple processes and the results can be applied widely, such as optical patterns.展开更多
Four kinds of micro heat pipe of trapezoidal groove wick structure with different numbers of grooves or aspect ratios were studied and compared about thermal transfer performances in order to optimize the manufacture ...Four kinds of micro heat pipe of trapezoidal groove wick structure with different numbers of grooves or aspect ratios were studied and compared about thermal transfer performances in order to optimize the manufacture of micro heat pipe with groove wick structure. The results show that these micro heat pipes have excellent performance in heat transfer; the equivalent thermal conductivity coefficient is two orders of magnitude compared with that of copper; the number and aspect ratio of grooves have a prominent effect on the performance of such thermal transfer. The optimum number of grooves is lower than 60 and the best aspect ratio is near to 1.5. The temperature and thermal transport rate are almost directly proportional relationship, but this relationship will be broken up suddenly when the critical heat flux is reached.展开更多
Small concentrations of a high-molecular-weight polymer have been used to create so-called "elastic tur- bulence" in a micro-scale serpentine channel geometry. It is known that the interaction of large elastic stres...Small concentrations of a high-molecular-weight polymer have been used to create so-called "elastic tur- bulence" in a micro-scale serpentine channel geometry. It is known that the interaction of large elastic stresses created by the shearing motion within the fluid flow with streamline curvature of the serpentine geometry leads initially to a purely-elastic instability and then the generation of elastic turbulence. We show that this elastic turbulence enhances the heat transfer at the micro-scale in this geometry by up to 300% under creeping flow conditions in comparison to that achieved by the equivalent Newtonian fluid flow.展开更多
文摘Machining experiment of micro channel structure with 6:4 brass was carried out by shaping process using a single crystal diamond tool. FEM simulation using solid cantilever beam model was analyzed. In result of experiment, tool deflection is observed as machining characteristics through result of experiments such as surface roughness, cutting force and burr formations. And the influence of tool deflection is experimentally proved.
文摘In this research,a numerical study of mixed convection of non-Newtonian fluid and magnetic field effect along a vertical wavy surface was investigated.A simple coordinate transformation to transform wavy surface to a flat surface is employed.A cubic spline collocation numerical method is employed to analyze transformed equations.The effect of various parameters such as Reynolds number,volume fraction 0-,Hartmann number,and amplitude of wave length was evaluated in improving the performance of a wavy microchannel.According to the presented results,the sinusoidal shape of the microchannel has a direct impact on heat transfer.By increasing the microchannel wave amplitude,the Nusselt number has risen.On the other hand,increasing the heat transfer in the higher wavelength ratio corrugated channel is seen as an effective method of increasing the heat transfer,especially at higher Reynolds numbers.The results showed that with increasing Hartmann numbers,the flow line near thewall becomesmore regular and,according to the temperature gradient created,theNusselt number growth.
基金supported by the National Natural Science Foundation of China(No.21176137) and Petro China
文摘Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.
基金Supported by the National Natural Science Foundation of China(21476037,21606034).
文摘In order to reduce or avoid the fluctuations from interface breakup, a meandering microchannel with curved multi-bends(44 turns) is fabricated, and investigations of scaling bubble/slug length in Taylor flow in a rectangular meandering microchannel are systematically conducted. Based on considerable experimental data,quantitative analyses for the influences of two important characteristic times, liquid phase physical properties and aspect ratio are made on the prediction criteria for the bubble/slug length of Taylor flow in a meandering microchannel. A simple principle is suggested to predict the bubble formation period by using the information of Rayleigh time and capillary time for six gas–liquid systems with average deviation of 10.96%. Considering physical properties of the liquid phase and cross-section configuration of the rectangular mcirochannel,revised scaling laws for bubble length are established by introducing Ca, We, Re and W/h whether for the squeezing-driven or shearing-driven of bubble break. In addition, a simple principle in terms of Garstecki-type model and bubble formation period is set-up to predict slug lengths. A total of 107 sets of experimental data are correlated with the meandering microchannel and operating range: 0.001 b CaTPb 0.05, 0.06 b WeTPb 9.0,18 b ReTPb 460 using the bubble/slug length prediction equation from current work. The average deviation between the correlated data and the experimental data for bubble length and slug length is about 9.42% and9.95%, respectively.
文摘The algorithm of gaseous flow in bi-dimensional micro-channels is set up andthe corresponding program based on micro-flow theory is presented. Gaseous flow in micro-channels isnumerically analyzed and the pressure drop along the duct as well .as the velocity profile in themicro-channels is obtained. The numerical results agreed well with the experimental results in thereferences. Moreover, the effects of Kn, sigma_v and Re on the velocity profiles are analyzed. It isfound that for Kn>0.001, with increasing Kn number, the slip velocity on the wall boundaryincreases; the tangential momentum coefficient sigma_v affects the slip velocity greatly. The slipvelocity increases with decreasing a, In the slip flow regime and for low Re numbers, the slipvelocity is little influenced by the Re number.
基金Project supported by the National Natural Science Foundation of China (No.20299030)
文摘Numerical simulation using the finite differential method was carried out to analyze the diffusion of an impulse sample in the micro-channel driven by electroosmosis. The results show that the electrical field strength applied externally and the concentration of buffer solution play a significant role in the diffusion of sample, however, hydraulic diameter and aspect ratio of height to width of channel play a small role in it. Weakening the electrical field strength applied externally and the concentration of buffer solution properly can prevent the sample band from broadening effectively, and promote the efficiency of testing and separation as well as keep a faster speed of transport. The conclusions are helpful to the optimal design for micro-channel.
基金supported by the National Natural Science Foundation of China(Grant Nos.61378083 and 11672229)the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011DFA12220)+2 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91123030)the Natural Science Foundation of Shaanxi Province of China(Grant Nos.2010JS110,14JS106,14JS107,and 2013SZS03-Z01)the Natural Science Basic Research Program of Shaanxi Province-Major Basic Research Project(Grant No.2016ZDJC-15)
文摘In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the movement of single molecule within micro-/submicro-fluidic channels, the characteristics of current signals at the initial stage of the flow are systematically studied based on a three-electrode system. The current response of micro-/submicro-fluidic channels filled with different electrolyte solutions in non-continuous external electric field are investigated. It is found, there always exists a current reversal phenomenon, which is an inherent property of the current signals in micro/submicro-fluidics Each solution has an individual critical voltage under which the steady current value is equal to zero The interaction between the steady current and external applied voltage follows an exponential function. All these results can be attributed to the overpotentials of the electric double layer on the electrodes. These results are helpful for the design and fabrication of functional micro/nano-scale fluidic sensors and biochips.
基金Project supported by the National Natural Science Foundation of China(Grant No.11802264)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20180896)
文摘Gas flow in a micro-channel usually has a high Knudsen number. The predominant predictive tool for such a microflow is the direct simulation Monte Carlo(DSMC) method, which is used in this paper to investigate primary flow properties of supersonic gas in a circular micro-channel for different inflow conditions, such as free stream at different altitudes, with different incoming Mach numbers, and with different angles of attack. Simulation results indicate that the altitude and free stream incoming Mach number have a significant effect on the whole micro-channel flow field, whereas the angle of attack mainly affects the entrance part of micro-channel flow field. The fundamental mechanism behind the simulation results is also presented. With the increase of altitude, thr free stream would be partly prevented from entering into micro-channel.Meanwhile, the gas flow in micro-channel is decelerated, and the increase in the angle of attack also decelerates the gas flow. In contrast, gas flow in micro-channel is accelerated as free stream incoming Mach number increases. A noteworthy finding is that the rarefaction effects can become very dominant when the free stream incoming Mach number is low. In other words, a free stream with a larger incoming velocity is able to reduce the influence of the rarefaction effects on gas flow in the micro-channel.
文摘Blood cells are mainly(~99%)comprised of red blood cells.The most remarkable properties of are their high deformability,which allow they flow through microcapillaries of diameter even smaller than their size.The RBC’s remarkable mechanical properties originate from the unique architecture of its membrane.To study the mechanism of RBC’s deformability,a commonly adopted approach is to localize the cytoskeleton protein by immunofluorescence,followed by exploring the changes of cytoskeleton protein during cell deformation.During this process,the fixed treatment of RBC using GA and PFA is of great importance.However,RBC’s deformability is reduced by the fixation process and skeletal protein of membrane is changed accordingly.The flow behavior of red RBCs through the microchannel also changed.Given the difficulty of observing RBC flow in vivo,in vitro simulation by virtue of microfluidic devices provides a feasible alternative.An important physiological phenomenon of the blood flow is the formation of cell free layer(CFL),with RBCs show a tendency to concentrate towards the central axis of the pipeline and move faster than the plasma layer.However,this phenomena is weaken if the stiffness of the membrane increase,which occurs in some disease,such as hereditary spherocytosis and hereditary elliptocytosis.To study the effects of GA and PFA fix treatment on RBC deformability,a microfluidic platform is employed to measuring the CFL and flow velocity of blood flow in this work.The PDMS micro flow channel used is 100 micrometers in width and 50 micrometers in deep.The RBC suspension is fed into the flow channel by the injection pump(NE-1000.USA),and the experiments are observed and recorded by the inverted microscope(IX70,Olympus,Japan)and high-speed camera(Memrecam GX-1,NAC,Japan)system.Three GA concentrations,i.e.,0.000 5,0.000 75,and 0.001 wt.%were used.Meanwhile,the effect of PFA at a concentration of 2wt.%work with GA was also investigated.Images of the flowing RBCs are processed mainly based on Memrecam GXLink.The results show that,the diameter of the RBC be treated is bigger and the shape of the RBC is became more flat after treated.Some of RBCs lost their biconcave structure.When the RBC suspension with 5%Hct flow in the microchannel,the CFL thickness decrease after being treated.And with concentrations of GA increase,the CFL thickness become thinner.The CFL thickness decrease significantly when GA and 2 wt.%PFA work combined.The velocity of RBCs decreases after treated with the GA or/and 2wt.%PFA.GA is known to relieve the dissolution of red blood cells during fluorescence labeling.On the other hand,the crosslinking of the aldehyde group(-cho)of GA with the amino group(-nh2)of RBC membrane protein will change the conformation of the membrane protein and its visco-elastic properties in turn.Then,the transparent fluidity orrheology characteristics of RBC is altered.Since GA and PFA are commonly used to immobilize red blood cells and keep the fluorescence constant,and PFA works similarly as GA,as a result,the variation of membrane protein conformation is intensified,and the membrane becomes stiffer.
基金Project supported by the National Natural Science Foundation of China(No.11872241)
文摘A fully developed steady immiscible flow of nanofluid in a two-layer microchannel is studied in the presence of electro-kinetic effects.Buongiorno’s model is employed for describing the behavior of nanofluids.Different from the previous studies on two-layer channel flow of a nanofluid,the present paper introduces the flux conservation conditions for the nanoparticle volume fraction field,which makes this work new and unique,and it is in coincidence with practical observations.The governing equations are reduced into a group of ordinary differential equations via appropriate similarity transformations.The highly accurate analytical approximations are obtained.Important physical quantities and total entropy generation are analyzed and discussed.A comparison is made to determine the significance of electrical double layer(EDL)effects in the presence of an external electric field.It is found that the Brownian diffusion,the thermophoresis diffusion,and the viscosity have significant effects on altering the flow behaviors.
基金Project supported by the National Natural Science Foundation of China(Nos.51303027 and 11172271)the Scientific Research Staring Foundation,Fujian University of Technology of China(No.GY-Z13028)+1 种基金the Research Fund of Fujian Education Department(No.JA11189)the Research Fund for Enterprise Technology Innovation(No.2011-702-04)
文摘In the micro-molding of component with a micro-sized channel, the ability for polymer melt to flowing into the micro-channel in a macro-sized part is a big challenge. The multidimensional flow behaviors are included in the injection molding the macro-component with a micro-channel. In this case, a simplified model is used to analyze the flow behaviors of the macro-sized part within a micro-channel. The flow behaviors in the macro-cavity are estimated by using the finite element and finite difference methods. The influence of the injection rate, micro-channel size, heat transfer coefficient, and mold temperature on the flowing distance is investigated based on the non-isothermal analytic method. The results show that an increase in the radius of the micro-channel and mold temperature can improve effectively the flowing distance in the micro-channel.
基金supported by the Research Foundation of the State Ethnic Affairs Commission of People’s Republic of China (Grant No. 10ZY05)the National Natural Science Foundation of China (Grant Nos. 10904176 and 11004169)the "985 Project"and the "211 Project" of the Ministry of Education of China
文摘Light propagation through a channel filter based on two-dimensional photonic crystals with elliptical-rod defects is studied by the finite-difference time-domain method. Shape alteration of the defects from the usual circle to an ellipse offers a powerful approach to engineer the resonant frequency of channel filters. It is found that the resonant frequency can be flexibly adjusted by just changing the orientation angle of the elliptical defects. The sensitivity of the resonant wavelength to the alteration of the oval rods' shape is also studied. This kind of multi-channel filter is very suitable for systems requiring a large number of output channel filters.
基金supported by National Natural Science Foundation of China (Grant Nos. 50675172,50975227)Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No.FANEDD200740)National Hi-tech Research and Development of China (863 Program,Grant No. 2011AA100507-04)
文摘The existing research of the flow behavior in emitter micro-channels mainly focuses on the single-phase flow behavior.And the recent micro-particle image velocimetry(PIV) experimental research on the flow characteristics in various micro-channels mainly focuses on the single-phase fluid flow.However,using an original-size emitter prototype to perform the experiments on the two-phase flow characteristics of the labyrinth channels is seldom reported.In this paper,the practical flow of water,mixed with sand escaped from filtering,in the labyrinth channel,is investigated.And some research work on the clogging mechanism of the labyrinth channel's structure is conducted.Computational fluid dynamics(CFD) analysis has been performed on liquid-solid two-phase flow in labyrinth-channel emitters.Based on flow visualization technology-micro-PIV,the flow in labyrinth channel has been photographed and recorded.The path line graph and velocity vector graph are obtained through the post-treatment of experimental results.The graphs agree well with CFD analysis results,so CFD analysis can be used in optimal design of labyrinth-channel emitters.And the optimized anti-clogging structures of the rectangular channel and zigzag channel have been designed here.The CFD numerical simulation and the micro-PIV experiments analysis on labyrinth-channel emitter,make the "black box" of the flow behavior in the emitter channel broken.Furthermore,the proposed research promotes an advanced method to evaluate the emitter's performance and can be used to conducting the optimal design of the labyrinth-channel emitters.
基金the support of Ministry of Knowledge and Economy through Strategic Technology Development ProjectConversing Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
文摘A novel fabrication process for micro patterns with curvature was introduced. The curved structures were made by compensating rectangular micro structures with liquid photoresist layer. Because of the surface tension of the liquid in micro scale, various shapes of meniscus can he made on the micro channels. The micro channels were made on the silicon suhstrate in advance, and then the liquid layer was coated on the micro channels. From the nature of liquid behavior, the curved patterns with smooth surface are obtained, which cannot be made easily with the conventional mechanical machining, as well as with the microfabrication processes, such as wet and dry etching. With this principle, it is expected that the smooth and curved surfaces can be made by simple processes and the results can be applied widely, such as optical patterns.
基金Projects(50605023 50436010) supported by the National Natural Science Foundation of China
文摘Four kinds of micro heat pipe of trapezoidal groove wick structure with different numbers of grooves or aspect ratios were studied and compared about thermal transfer performances in order to optimize the manufacture of micro heat pipe with groove wick structure. The results show that these micro heat pipes have excellent performance in heat transfer; the equivalent thermal conductivity coefficient is two orders of magnitude compared with that of copper; the number and aspect ratio of grooves have a prominent effect on the performance of such thermal transfer. The optimum number of grooves is lower than 60 and the best aspect ratio is near to 1.5. The temperature and thermal transport rate are almost directly proportional relationship, but this relationship will be broken up suddenly when the critical heat flux is reached.
基金financial support from The Higher Committee for Education Development in Iraq and The Iraqi Ministry of Higher Education and Scientific Research
文摘Small concentrations of a high-molecular-weight polymer have been used to create so-called "elastic tur- bulence" in a micro-scale serpentine channel geometry. It is known that the interaction of large elastic stresses created by the shearing motion within the fluid flow with streamline curvature of the serpentine geometry leads initially to a purely-elastic instability and then the generation of elastic turbulence. We show that this elastic turbulence enhances the heat transfer at the micro-scale in this geometry by up to 300% under creeping flow conditions in comparison to that achieved by the equivalent Newtonian fluid flow.