In this paper,a Voronoi cell finite element model is developed to study the microscopic and macroscopic mechanical behaviors of heterogenous materials,including arbitrary distributed heterogeneity(inclusions or fibers...In this paper,a Voronoi cell finite element model is developed to study the microscopic and macroscopic mechanical behaviors of heterogenous materials,including arbitrary distributed heterogeneity(inclusions or fibers)coated with interphase layers,based on linear elasticity theory.The interphase between heterogeneity and a matrix are regarded as in the third phase(elastic layers),in contrast to the perfect interface of the spring-like Voronoi cell finite element model(VCFEM)in the literature.In this model,both stress and the displacement field are assumed to be independent in an element.Formulations of stress are derived for each of the three phases in an element,as is the type of functional.Numerical examples were used to study the microscopic and macroscopic properties,such as the effective modulus,of the composites.The results of the proposed VCFEM were compared with analytical solution and numerical results obtained from a standard finite element analysis to confirm its effectiveness.展开更多
基金supported by the National Natural Science Foundation of China(Grants 11402103 and 11572142).
文摘In this paper,a Voronoi cell finite element model is developed to study the microscopic and macroscopic mechanical behaviors of heterogenous materials,including arbitrary distributed heterogeneity(inclusions or fibers)coated with interphase layers,based on linear elasticity theory.The interphase between heterogeneity and a matrix are regarded as in the third phase(elastic layers),in contrast to the perfect interface of the spring-like Voronoi cell finite element model(VCFEM)in the literature.In this model,both stress and the displacement field are assumed to be independent in an element.Formulations of stress are derived for each of the three phases in an element,as is the type of functional.Numerical examples were used to study the microscopic and macroscopic properties,such as the effective modulus,of the composites.The results of the proposed VCFEM were compared with analytical solution and numerical results obtained from a standard finite element analysis to confirm its effectiveness.