In most studies of microstrip circuits, the majority of researchers assume that the microstrip structures studied have flat metallic conductors of finite widths but without thickness. But in reality these types of str...In most studies of microstrip circuits, the majority of researchers assume that the microstrip structures studied have flat metallic conductors of finite widths but without thickness. But in reality these types of structures integrate metallic copper conductors of different thicknesses. If we neglect this thickness we introduce error in the electrical parameters of the microstrip structure, which affects the effective permittivity, the characteristic impedance, the adaptation of the circuit, the resonance frequency, etc. Given the importance of this parameter (thickness of the metal of micro rubon structures), rigorous electromagnetic modeling of the thick micro rubon line based on the skin effect phenomenon (In fact at high frequency the skin effect phenomenon occurs and the current only flows on the periphery of the conductor) has been proposed to improve the studied electric model and ensure the increase in the precision of the analysis method used: Wave concept iterative process. The good agreement between the simulated and published data justifies the improvement of the model.展开更多
In this work, we applied two electromagnetic models for the characterization of a planar structure including a flat, thick copper conductor. Indeed the first model is consisted by modeling two metal ribbons without bu...In this work, we applied two electromagnetic models for the characterization of a planar structure including a flat, thick copper conductor. Indeed the first model is consisted by modeling two metal ribbons without bulkiness, placed one above the other at a distance of h<sub>2</sub> equal to the thickness of the thick conductor. This approach has been implemented and tested by the iterative method. The results of simulations have been compared with those calculated by the Ansoft HFSS software, and they are in good concordance, validating the method of analysis used. The second model is based on the calculation of the effective permittivity of the medium containing the thick conductor. This medium consists of a metallic region of complex relative permittivity , the rest of this medium is filled with air e<sub>r</sub><sub>2</sub> = 1. The effective permittivity e<sub>eff</sub> calculated from these two relative permittivity e<sub>r</sub><sub>2</sub> and . Comparing the simulation results of this new formulation of the iterative method with those calculated by the software Ansoft HFSS shows that they are in good matching which validates the second model.展开更多
In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the move...In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the movement of single molecule within micro-/submicro-fluidic channels, the characteristics of current signals at the initial stage of the flow are systematically studied based on a three-electrode system. The current response of micro-/submicro-fluidic channels filled with different electrolyte solutions in non-continuous external electric field are investigated. It is found, there always exists a current reversal phenomenon, which is an inherent property of the current signals in micro/submicro-fluidics Each solution has an individual critical voltage under which the steady current value is equal to zero The interaction between the steady current and external applied voltage follows an exponential function. All these results can be attributed to the overpotentials of the electric double layer on the electrodes. These results are helpful for the design and fabrication of functional micro/nano-scale fluidic sensors and biochips.展开更多
文摘In most studies of microstrip circuits, the majority of researchers assume that the microstrip structures studied have flat metallic conductors of finite widths but without thickness. But in reality these types of structures integrate metallic copper conductors of different thicknesses. If we neglect this thickness we introduce error in the electrical parameters of the microstrip structure, which affects the effective permittivity, the characteristic impedance, the adaptation of the circuit, the resonance frequency, etc. Given the importance of this parameter (thickness of the metal of micro rubon structures), rigorous electromagnetic modeling of the thick micro rubon line based on the skin effect phenomenon (In fact at high frequency the skin effect phenomenon occurs and the current only flows on the periphery of the conductor) has been proposed to improve the studied electric model and ensure the increase in the precision of the analysis method used: Wave concept iterative process. The good agreement between the simulated and published data justifies the improvement of the model.
文摘In this work, we applied two electromagnetic models for the characterization of a planar structure including a flat, thick copper conductor. Indeed the first model is consisted by modeling two metal ribbons without bulkiness, placed one above the other at a distance of h<sub>2</sub> equal to the thickness of the thick conductor. This approach has been implemented and tested by the iterative method. The results of simulations have been compared with those calculated by the Ansoft HFSS software, and they are in good concordance, validating the method of analysis used. The second model is based on the calculation of the effective permittivity of the medium containing the thick conductor. This medium consists of a metallic region of complex relative permittivity , the rest of this medium is filled with air e<sub>r</sub><sub>2</sub> = 1. The effective permittivity e<sub>eff</sub> calculated from these two relative permittivity e<sub>r</sub><sub>2</sub> and . Comparing the simulation results of this new formulation of the iterative method with those calculated by the software Ansoft HFSS shows that they are in good matching which validates the second model.
基金supported by the National Natural Science Foundation of China(Grant Nos.61378083 and 11672229)the International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2011DFA12220)+2 种基金the Major Research Plan of the National Natural Science Foundation of China(Grant No.91123030)the Natural Science Foundation of Shaanxi Province of China(Grant Nos.2010JS110,14JS106,14JS107,and 2013SZS03-Z01)the Natural Science Basic Research Program of Shaanxi Province-Major Basic Research Project(Grant No.2016ZDJC-15)
文摘In practical applications of biochips and bio-sensors, electrokinetic mechanisms are commonly employed to manipulate and analyze the characteristics of single bio-molecules. To accurately and flexibly control the movement of single molecule within micro-/submicro-fluidic channels, the characteristics of current signals at the initial stage of the flow are systematically studied based on a three-electrode system. The current response of micro-/submicro-fluidic channels filled with different electrolyte solutions in non-continuous external electric field are investigated. It is found, there always exists a current reversal phenomenon, which is an inherent property of the current signals in micro/submicro-fluidics Each solution has an individual critical voltage under which the steady current value is equal to zero The interaction between the steady current and external applied voltage follows an exponential function. All these results can be attributed to the overpotentials of the electric double layer on the electrodes. These results are helpful for the design and fabrication of functional micro/nano-scale fluidic sensors and biochips.