Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r...Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.展开更多
We present a systematic investigation of the impact of changing the geometry structure of the SPC/E water model by performing a series of molecular dynamic simulations at 1 bar (1 bar = 105 Pa) and 298.15 K. The geo...We present a systematic investigation of the impact of changing the geometry structure of the SPC/E water model by performing a series of molecular dynamic simulations at 1 bar (1 bar = 105 Pa) and 298.15 K. The geometric modification includes altering the H-O-H angle range from 90° to 115° and modifying the O-H length range from 0.90 A to 1.10 A in the SPC/E model. The former is achieved by keeping the dipole moment constant by modifying the O-H length, while in the latter only the O-H length is changed. With the larger bond length and angle, we find that the liquid shows a strong quadrupole interaction and high tetrahedral structure order parameter, resulting in the enhancement of the network structure of the liquid. When the bond length or angle is reduced, the hydrogen bond lifetime and self-diffusion constant decrease due to the weakening of the intermolecular interaction. We find that modifying the water molecular bond length leading to the variation of the intermolecular interaction strength is more intensive than changing the bond angle. Through calculating the average reduced density gradient and thermal fluctuation index, it is found that the scope of vdW interaction with neighbouring water molecules is inversely proportional to the change of the bond length and angle. The effect is mainly due to a significant change of the hydrogen bond network. To study the effect of water models as a solvent whose geometry has been modified, the solutions of ions in different solvent environments are examined by introducing NaCI. During the dissolving process, NaCI ions are ideally dissolved in SPC/E water and bond with natural water more easily than with other solvent models.展开更多
This study presents a high-speed geometrically nonlinear flutter analysis calculation method based on the highprecision computational fluid dynamics/computational structural dynamics methods.In the proposed method,the...This study presents a high-speed geometrically nonlinear flutter analysis calculation method based on the highprecision computational fluid dynamics/computational structural dynamics methods.In the proposed method,the aerodynamic simulation was conducted based on computational fluid dynamics,and the structural model was established using the nonlinear finite element model and tangential stiffness matrix.First,the equilibrium position was obtained using the nonlinear static aeroelastic iteration.Second,the structural modal under a steady aerodynamic load was extracted.Finally,the generalized displacement time curve was obtained by coupling the unsteady aerodynamics and linearized structure motion equations.Moreover,if the flutter is not at a critical state,the incoming flow dynamic pressure needs to be changed,and the above steps must be repeated until the vibration amplitude are equal.Furthermore,the high-speed geometrically nonlinear flutter of the wing-body assemblymodel with a high-aspect ratio was investigated,and the correctness of the method was verified using high-speed wind tunnel experiments.The results showed that the geometric nonlinearity of the large deformation of the wing caused in-plane bending to become a key factor in flutter characteristics and significantly decreased the dynamic pressure and frequency of the nonlinear flutter compared to those of the linear flutter.展开更多
An efficient and real-time simulation method is proposed for the dynamic electromagnetic characteristics of cluster targets to meet the requirements of engineering practical applications.First,the coordinate transform...An efficient and real-time simulation method is proposed for the dynamic electromagnetic characteristics of cluster targets to meet the requirements of engineering practical applications.First,the coordinate transformation method is used to establish a geometric model of the observation scene,which is described by the azimuth angles and elevation angles of the radar in the target reference frame and the attitude angles of the target in the radar reference frame.Then,an approach for dynamic electromagnetic scattering simulation is proposed.Finally,a fast-computing method based on sparsity in the time domain,space domain,and frequency domain is proposed.The method analyzes the sparsity-based dynamic scattering characteristic of the typical cluster targets.The error between the sparsity-based method and the benchmark is small,proving the effectiveness of the proposed method.展开更多
The forming quality of high-strength TA18 titanium alloy tube during numerical control bending in changing bending angle β, relative bending radius R/D and tube sizes such as diameter D and wall thickness t was clari...The forming quality of high-strength TA18 titanium alloy tube during numerical control bending in changing bending angle β, relative bending radius R/D and tube sizes such as diameter D and wall thickness t was clarified by finite element simulation. The results show that the distribution of wall thickness change ratio Δt and cross section deformation ratio ΔD are very similar under different β; the Δt and ΔD decrease with the increase of R/D, and to obtain the qualified bent tube, the R/D must be greater than 2.0; the wall thinning ratio Δto slightly increases with larger D and t, while the wall thickening ratio Δti and ΔD increase with the larger D and smaller t; the Δto and ΔD firstly decrease and then increase, while the Δti increases, for the same D/t with the increase of D and t.展开更多
The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carr...The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier.The result shows that the equivalent radius of pores and throats are 1-16 μm and 1.03-8.9 μm,respectively,and the throat length is 3.28-231.25 μm.The coordination number of pores concentrates around three,and the intersection point between the connectivity function and the X-axis is 3-4 μm,which indicate the macro-pores have good connectivity.During the single-channel flow,the pressure decreases along the direction of CH4 flow,and the flow velocity of CH4 decreases from the pore center to the wall.Under the dual-channel and the multi-channel flows,the pressure also decreases along the CH4 flow direction,while the velocity increases.The mean flow pressure gradually decreases with the increase of the distance from the inlet slice.The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane,while it is relatively large in the direction perpendicular to the bedding plane.The mean flow velocity in the direction horizontal to the bedding plane(Y-axis) is the largest,followed by that in the direction horizontal to the bedding plane(X-axis),and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.展开更多
A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resem...A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resembled real rockfill particles. A theoretical method was developed to define the failure criterion for an individual particle subjected to an arbitrary set of contact forces. Then, a series of numerical tests of large-scale drained triaxial tests were conducted to simulate the behaviors of the rockfill sample. Finally, we examined the development of micro-characteristics such as particle crushing, contact characteristics, porosity, deformation, movement, and energy dissipation. The simulation results were partially compared with the laboratory experiments, and good agreement was achieved, demonstrating that the particle crushing model proposed can be used to simulate the drained triaxial test ofrockfill materials. Based on a comparison of macro behaviors of the roekfill sample and micro structures of the particles, the microscopic mechanism of the rockfill materials subjected to triaxial shear was determined qualitatively. It is shown that the crushing rate, rather than the number of crushed particles, can be used to reflect the relationship between macro- and micro-mechanical characteristics of rockfill materials. These research results further develop our understanding of the deformation mechanism of rockfill materials.展开更多
The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations. The extra terms, due to the introduction of mapping transformation simulating the effect of disturbance in...The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations. The extra terms, due to the introduction of mapping transformation simulating the effect of disturbance into the transformed Navier-Stokes equations, are correctly derived, and the incorrect ones in the previous literature are pointed out and analyzed. Furthermore, the relationship between the vorticity, especially on the cylinder surface, and the disturbance is derived and explained theoretically. The computations are performed at two Reynolds numbers of 100 and 180 and three amplitudes of waviness of 0.006, 0.025 and 0.167 with another aim to explore the effects of different Reynolds numbers and disturbance on the vortex dynamics in the wake and forces on the body. Numerical results have shown that, at the mild waviness of 0.025, the Kairmain vortex shedding is suppressed completely for Re = 100, while the forced vortex dislocation is appeared in the near wake at the Reynolds number of 180. The drag reduction is up to 21.6% at Re = 100 and 25.7% at Re = 180 for the high waviness of 0.167 compared with the non-wavy cylinder. The lift and the Strouhal number varied with different Reynolds numbers and the wave steepness are also obtained.展开更多
Punch shear tests have been widely used to determine rock shear mechanical properties but without a standard sample geometric dimension suggestion.To investigate the impacts of sample geometric dimensions on shear beh...Punch shear tests have been widely used to determine rock shear mechanical properties but without a standard sample geometric dimension suggestion.To investigate the impacts of sample geometric dimensions on shear behaviors in a punch shear test,simulations using Particle Flow Code were carried out.The effects of three geometric dimensions(i.e.,disk diameter,ratio of shear surface diameter to disk diameter,and ratio of disk height to shear surface diameter)were discussed.Variations of shear strength,shear stiffness,and shear dilatancy angles were studied,and the fracture processes and patterns of samples were investigated.Then,normal stress on the shear surface during test was analyzed and a suggested disk geometric dimension was given.Simulation results show that when the ratio of the shear surface diameter to the disk diameter and the ratio of disk height to the shear surface diameter is small enough,the shear strength,shear stiffness,and shear dilatancy angles are extremely sensitive to the three geometric parameters.If the ratio of surface diameter to disk diameter is too large or the ratio of disk height to surface diameter is too small,a part of the sample within the shear surface will fail due to macro tensile cracks,which is characterized by break off.Samples with a greater ratio of disk height to shear surface diameter,namely when the sample is relatively thick,crack from one end to the other while others crack from both ends towards the middle.During test,the actual normal stress on the shear surface is greater than the target value because of the extra compressive stress from the part of sample outside shear surface.展开更多
A comparison research about the implicit and explicit solutions of sheet forming simulation was presented. On the platform of Autoform and Ls dyna3D, a dynamic forming simulation of a sideframe, of Santana 2000 was do...A comparison research about the implicit and explicit solutions of sheet forming simulation was presented. On the platform of Autoform and Ls dyna3D, a dynamic forming simulation of a sideframe, of Santana 2000 was done, and the engineering strain, the thickness distribution and the FLD between the two softwares were compared. It indicates that their results coincide with each other very much and the areas of the wrinkle and failure are the same roughly. Further, the characteristics of the two softwares in geometric model and preprocessing of the finite element were discussed and the questions which need attention provided.展开更多
Based on the actual measured well depth, azimuth and oblique angles, a novel interpolation method to obtain the well axis is developed. The initial stress of drill string at the reference state consistent with well ax...Based on the actual measured well depth, azimuth and oblique angles, a novel interpolation method to obtain the well axis is developed. The initial stress of drill string at the reference state consistent with well axis can be obtained from the curvature and the tortuosity of well axis. By using the principle of virtual work, the formula to compute the equivalent load vector of the initial stress was derived. In the derivation,the natural (curvilinear) coordinate system was adopted since both the curvature and the tortuosity were generally not zero. A set of displacement functions fully reflecting the rigid body modes was used. Some basic concepts in the finite element analysis of drill string were clarified. It is hoped that the proposed method would offer a theoretical basis for handling the geometric nonlinear problem of the drill string in a 3-D larg edisplacement wellbore.展开更多
A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constra...A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constraint, joint-attached kinematic constraint and boundary constraint. And their geometric constraint equations and derivative matrices are formulated. The basis of the null space and M-P inverse of the geometric constraint matrix are employed to determine the solution for quasi-static deployment analysis. The influence introduced by higher terms of constraints is evaluated subsequently. The numerical tests show that the new method is efficient.展开更多
A numerical method for simulating the stability of particle-packing structures is presented. The packing structures were modeled on the basis of face-centered cubic (fcc) and body-centered cubic (bcc) structures, and ...A numerical method for simulating the stability of particle-packing structures is presented. The packing structures were modeled on the basis of face-centered cubic (fcc) and body-centered cubic (bcc) structures, and the stability of these structures was investigated using the distinct element method. The interaction between the particles was simplified by considering repulsive, adhesive, and damping forces, and the stability against the gravitational force was simulated. The results under a certain set of parameters showed characteristic deformation when the particles were arranged in an fcc array. Focusing on the local structure, the resulting model was divided into several domains: The bottom base, four top corners, and intermediate domains. The bottom base notably became a body-centered tetragonal (bct) structure, which corresponds to a uniaxially compressed bcc structure. Conversely, the models based on the bcc arrangement were structurally stable, as no specific deformation was observed, and a monotonously compressed bct structure was obtained. Consequently, the bcc arrangement is concluded to be more stable against uniaxial compression, such as the gravitational force, in a particle-packing system.展开更多
文摘Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11635003,11025524,and 11161130520)the National Basic Research Program of China(Grant No.2010CB832903)the European Commission’s 7th Framework Programme(Fp7-PEOPLE-2010-IRSES)(Grant Agreement Project No.269131)
文摘We present a systematic investigation of the impact of changing the geometry structure of the SPC/E water model by performing a series of molecular dynamic simulations at 1 bar (1 bar = 105 Pa) and 298.15 K. The geometric modification includes altering the H-O-H angle range from 90° to 115° and modifying the O-H length range from 0.90 A to 1.10 A in the SPC/E model. The former is achieved by keeping the dipole moment constant by modifying the O-H length, while in the latter only the O-H length is changed. With the larger bond length and angle, we find that the liquid shows a strong quadrupole interaction and high tetrahedral structure order parameter, resulting in the enhancement of the network structure of the liquid. When the bond length or angle is reduced, the hydrogen bond lifetime and self-diffusion constant decrease due to the weakening of the intermolecular interaction. We find that modifying the water molecular bond length leading to the variation of the intermolecular interaction strength is more intensive than changing the bond angle. Through calculating the average reduced density gradient and thermal fluctuation index, it is found that the scope of vdW interaction with neighbouring water molecules is inversely proportional to the change of the bond length and angle. The effect is mainly due to a significant change of the hydrogen bond network. To study the effect of water models as a solvent whose geometry has been modified, the solutions of ions in different solvent environments are examined by introducing NaCI. During the dissolving process, NaCI ions are ideally dissolved in SPC/E water and bond with natural water more easily than with other solvent models.
文摘This study presents a high-speed geometrically nonlinear flutter analysis calculation method based on the highprecision computational fluid dynamics/computational structural dynamics methods.In the proposed method,the aerodynamic simulation was conducted based on computational fluid dynamics,and the structural model was established using the nonlinear finite element model and tangential stiffness matrix.First,the equilibrium position was obtained using the nonlinear static aeroelastic iteration.Second,the structural modal under a steady aerodynamic load was extracted.Finally,the generalized displacement time curve was obtained by coupling the unsteady aerodynamics and linearized structure motion equations.Moreover,if the flutter is not at a critical state,the incoming flow dynamic pressure needs to be changed,and the above steps must be repeated until the vibration amplitude are equal.Furthermore,the high-speed geometrically nonlinear flutter of the wing-body assemblymodel with a high-aspect ratio was investigated,and the correctness of the method was verified using high-speed wind tunnel experiments.The results showed that the geometric nonlinearity of the large deformation of the wing caused in-plane bending to become a key factor in flutter characteristics and significantly decreased the dynamic pressure and frequency of the nonlinear flutter compared to those of the linear flutter.
文摘An efficient and real-time simulation method is proposed for the dynamic electromagnetic characteristics of cluster targets to meet the requirements of engineering practical applications.First,the coordinate transformation method is used to establish a geometric model of the observation scene,which is described by the azimuth angles and elevation angles of the radar in the target reference frame and the attitude angles of the target in the radar reference frame.Then,an approach for dynamic electromagnetic scattering simulation is proposed.Finally,a fast-computing method based on sparsity in the time domain,space domain,and frequency domain is proposed.The method analyzes the sparsity-based dynamic scattering characteristic of the typical cluster targets.The error between the sparsity-based method and the benchmark is small,proving the effectiveness of the proposed method.
基金Project(GJJ150810)supported by the Research Project of Science and Technology for Jiangxi Province Department of Education,ChinaProject(gf201501001)supported by National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University,ChinaProject(BSJJ2015015)supported by Doctor Start-up Fund of Jiangxi Science&Technology Normal University,China
文摘The forming quality of high-strength TA18 titanium alloy tube during numerical control bending in changing bending angle β, relative bending radius R/D and tube sizes such as diameter D and wall thickness t was clarified by finite element simulation. The results show that the distribution of wall thickness change ratio Δt and cross section deformation ratio ΔD are very similar under different β; the Δt and ΔD decrease with the increase of R/D, and to obtain the qualified bent tube, the R/D must be greater than 2.0; the wall thinning ratio Δto slightly increases with larger D and t, while the wall thickening ratio Δti and ΔD increase with the larger D and smaller t; the Δto and ΔD firstly decrease and then increase, while the Δti increases, for the same D/t with the increase of D and t.
基金financially supported by the National Key Research and Development Plan(No.2018YFB0605601)the National Natural Science Foundation of China(No.41972168)。
文摘The three-dimensional(3 D) structures of pores directly affect the CH4 flow.Therefore,it is very important to analyze the3 D spatial structure of pores and to simulate the CH4 flow with the connected pores as the carrier.The result shows that the equivalent radius of pores and throats are 1-16 μm and 1.03-8.9 μm,respectively,and the throat length is 3.28-231.25 μm.The coordination number of pores concentrates around three,and the intersection point between the connectivity function and the X-axis is 3-4 μm,which indicate the macro-pores have good connectivity.During the single-channel flow,the pressure decreases along the direction of CH4 flow,and the flow velocity of CH4 decreases from the pore center to the wall.Under the dual-channel and the multi-channel flows,the pressure also decreases along the CH4 flow direction,while the velocity increases.The mean flow pressure gradually decreases with the increase of the distance from the inlet slice.The change of mean flow pressure is relatively stable in the direction horizontal to the bedding plane,while it is relatively large in the direction perpendicular to the bedding plane.The mean flow velocity in the direction horizontal to the bedding plane(Y-axis) is the largest,followed by that in the direction horizontal to the bedding plane(X-axis),and the mean flow velocity in the direction perpendicular to the bedding plane is the smallest.
基金supported by the National Key Basic Research Program of China (Grants No. 50879007 and 50979014)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20090041110016)
文摘A discrete element method was used to study the evolution of particle crushing in a rockfill sample subjected to triaxial shear. A simple procedure was developed to generate clusters with arbitrary shapes, which resembled real rockfill particles. A theoretical method was developed to define the failure criterion for an individual particle subjected to an arbitrary set of contact forces. Then, a series of numerical tests of large-scale drained triaxial tests were conducted to simulate the behaviors of the rockfill sample. Finally, we examined the development of micro-characteristics such as particle crushing, contact characteristics, porosity, deformation, movement, and energy dissipation. The simulation results were partially compared with the laboratory experiments, and good agreement was achieved, demonstrating that the particle crushing model proposed can be used to simulate the drained triaxial test ofrockfill materials. Based on a comparison of macro behaviors of the roekfill sample and micro structures of the particles, the microscopic mechanism of the rockfill materials subjected to triaxial shear was determined qualitatively. It is shown that the crushing rate, rather than the number of crushed particles, can be used to reflect the relationship between macro- and micro-mechanical characteristics of rockfill materials. These research results further develop our understanding of the deformation mechanism of rockfill materials.
基金the National High-Tech Research and Development Program of China (863 Program)(2006AA09Z350)the Knowledge Innovation Program of the Chinese Academy of Sciences (KJCX2-YW-L02)
文摘The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations. The extra terms, due to the introduction of mapping transformation simulating the effect of disturbance into the transformed Navier-Stokes equations, are correctly derived, and the incorrect ones in the previous literature are pointed out and analyzed. Furthermore, the relationship between the vorticity, especially on the cylinder surface, and the disturbance is derived and explained theoretically. The computations are performed at two Reynolds numbers of 100 and 180 and three amplitudes of waviness of 0.006, 0.025 and 0.167 with another aim to explore the effects of different Reynolds numbers and disturbance on the vortex dynamics in the wake and forces on the body. Numerical results have shown that, at the mild waviness of 0.025, the Kairmain vortex shedding is suppressed completely for Re = 100, while the forced vortex dislocation is appeared in the near wake at the Reynolds number of 180. The drag reduction is up to 21.6% at Re = 100 and 25.7% at Re = 180 for the high waviness of 0.167 compared with the non-wavy cylinder. The lift and the Strouhal number varied with different Reynolds numbers and the wave steepness are also obtained.
基金supported by the Fundamental Research Funds for the Central Universities,CHD(Nos.300102210307,300102210308)the National Natural Science Foundation of China(Nos.51708040,41831286,51678063,51978065).
文摘Punch shear tests have been widely used to determine rock shear mechanical properties but without a standard sample geometric dimension suggestion.To investigate the impacts of sample geometric dimensions on shear behaviors in a punch shear test,simulations using Particle Flow Code were carried out.The effects of three geometric dimensions(i.e.,disk diameter,ratio of shear surface diameter to disk diameter,and ratio of disk height to shear surface diameter)were discussed.Variations of shear strength,shear stiffness,and shear dilatancy angles were studied,and the fracture processes and patterns of samples were investigated.Then,normal stress on the shear surface during test was analyzed and a suggested disk geometric dimension was given.Simulation results show that when the ratio of the shear surface diameter to the disk diameter and the ratio of disk height to the shear surface diameter is small enough,the shear strength,shear stiffness,and shear dilatancy angles are extremely sensitive to the three geometric parameters.If the ratio of surface diameter to disk diameter is too large or the ratio of disk height to surface diameter is too small,a part of the sample within the shear surface will fail due to macro tensile cracks,which is characterized by break off.Samples with a greater ratio of disk height to shear surface diameter,namely when the sample is relatively thick,crack from one end to the other while others crack from both ends towards the middle.During test,the actual normal stress on the shear surface is greater than the target value because of the extra compressive stress from the part of sample outside shear surface.
文摘A comparison research about the implicit and explicit solutions of sheet forming simulation was presented. On the platform of Autoform and Ls dyna3D, a dynamic forming simulation of a sideframe, of Santana 2000 was done, and the engineering strain, the thickness distribution and the FLD between the two softwares were compared. It indicates that their results coincide with each other very much and the areas of the wrinkle and failure are the same roughly. Further, the characteristics of the two softwares in geometric model and preprocessing of the finite element were discussed and the questions which need attention provided.
文摘Based on the actual measured well depth, azimuth and oblique angles, a novel interpolation method to obtain the well axis is developed. The initial stress of drill string at the reference state consistent with well axis can be obtained from the curvature and the tortuosity of well axis. By using the principle of virtual work, the formula to compute the equivalent load vector of the initial stress was derived. In the derivation,the natural (curvilinear) coordinate system was adopted since both the curvature and the tortuosity were generally not zero. A set of displacement functions fully reflecting the rigid body modes was used. Some basic concepts in the finite element analysis of drill string were clarified. It is hoped that the proposed method would offer a theoretical basis for handling the geometric nonlinear problem of the drill string in a 3-D larg edisplacement wellbore.
基金National Natural Science Foundation ofChina(No.10 10 2 0 10 )
文摘A new method was proposed for quasi-static deployment analysis of deployable space truss structures. The structure is assumed a rigid assembly, whose constraints are classified as three categories:rigid member constraint, joint-attached kinematic constraint and boundary constraint. And their geometric constraint equations and derivative matrices are formulated. The basis of the null space and M-P inverse of the geometric constraint matrix are employed to determine the solution for quasi-static deployment analysis. The influence introduced by higher terms of constraints is evaluated subsequently. The numerical tests show that the new method is efficient.
文摘A numerical method for simulating the stability of particle-packing structures is presented. The packing structures were modeled on the basis of face-centered cubic (fcc) and body-centered cubic (bcc) structures, and the stability of these structures was investigated using the distinct element method. The interaction between the particles was simplified by considering repulsive, adhesive, and damping forces, and the stability against the gravitational force was simulated. The results under a certain set of parameters showed characteristic deformation when the particles were arranged in an fcc array. Focusing on the local structure, the resulting model was divided into several domains: The bottom base, four top corners, and intermediate domains. The bottom base notably became a body-centered tetragonal (bct) structure, which corresponds to a uniaxially compressed bcc structure. Conversely, the models based on the bcc arrangement were structurally stable, as no specific deformation was observed, and a monotonously compressed bct structure was obtained. Consequently, the bcc arrangement is concluded to be more stable against uniaxial compression, such as the gravitational force, in a particle-packing system.