Micro molybdenum disulfide was prepared with one-step hydrothermal method;the influence of reactant concentration and temperature on the surface ratio of micro-MoS2 grain was investigated. Raman spectroscopy (Raman), ...Micro molybdenum disulfide was prepared with one-step hydrothermal method;the influence of reactant concentration and temperature on the surface ratio of micro-MoS2 grain was investigated. Raman spectroscopy (Raman), X-ray diffraction (XRD), and Scanning electron microscopy (SEM) were used to characterize the structure, composition and morphology of MoS2. The results show that micro-MoS2 grains were synthesized with one-step hydrothermal synthesis, and the morphology of micro-MoS2 grains is like flower and sphere. The SEM figures indicate that the surface ratio of micro-MoS2 grains is different and also show that the surface ratio of micro-MoS2 grains can be improved by regulating reactant concentration and temperature. This research showed a method to improve the surface ratio of micro-MoS2 grains.展开更多
Bismuth-based catalysts are highly promising for the electrochemical carbon dioxide reduction reaction(eCO_(2)RR)to formate product.However,achieving high activity and selectivity towards formate and ensuring long-ter...Bismuth-based catalysts are highly promising for the electrochemical carbon dioxide reduction reaction(eCO_(2)RR)to formate product.However,achieving high activity and selectivity towards formate and ensuring long-term stability remains challenging.This work reports the oxygen plasma inducing strategy to construct the abundant grain boundaries of Bi/BiO_x on ultrathin two-dimensional Bi nanosheets.The oxygen plasma-treated Bi nanosheet(OP-Bi)exhibits over 90%Faradaic efficiency(FE)for formate at a wide potential range from-0.5 to-1.1 V,and maintains a great stability catalytic performance without significant decay over 30 h in flow cell.Moreover,membrane electrode assembly(MEA)device with OPBi as catalyst sustains the robust current density of 100 mA cm^(-2)over 50 h,maintaining a formate FE above 90%.In addition,rechargeable Zn-CO_(2)battery presents the peak power density of1.22 mW cm^(-2)with OP-Bi as bifunctional catalyst.The mechanism experiments demonstrate that the high-density grain boundaries of OP-Bi provide more exposed active sites,faster electron transfer capacity,and the stronger intrinsic activity of Bi atoms.In situ spectroscopy and theo retical calculations further elucidate that the unsaturated Bi coordination atoms between the grain boundaries can effectively activate CO_(2)molecules through elongating the C-O bond,and reducing the formation energy barrier of the key intermediate(^(*)OCOH),thereby enhancing the catalytic performance of eCO_(2)RR to formate product.展开更多
The Al2Ca intermetallic compound was prepared by melting process in a vacuum induction furnace. And the A12Ca compound was added in as-cast AZ31 alloys for grain refinement. The effect of its additional levels on grai...The Al2Ca intermetallic compound was prepared by melting process in a vacuum induction furnace. And the A12Ca compound was added in as-cast AZ31 alloys for grain refinement. The effect of its additional levels on grain refinement of as-cast AZ31 alloy was investigated and the mechanism of the grain refinement was discussed. The results reveal that the addition of 1.1% Al2Ca (mass fraction) decreases the average grain size of as-cast AZ31 alloy from 354 to 198 μm. And the thermal stability of the grains refined by Al2Ca is superior. The grain refining mechanism is attributed to the combined effects of solute and heterogeneous nucleation from the Al2Ca.展开更多
本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光...本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光谱参数进行皮尔逊相关性分析,结果表明,5项品质指标在4个生育期内均与光谱参数有不同程度相关性。然后筛选出相关性效果显著的光谱参数,用于建立各品质指标的预测方程,建模结果表明,基于卫星遥感光谱信息解释率由大到小的稻米品质指标依次是精米率>长宽比>蛋白质含量>直链淀粉含量>糙米率;卫星遥感光谱反演稻米各品质指标所在的最佳生育期不同,糙米率和精米率的最佳生育期为抽穗期,其建模决定系数(Coefficient of Determination,R^(2))分别为0.461和0.893;长宽比的最佳生育期为成熟期,R^(2)为0.878;直链淀粉含量和蛋白质含量的最佳生育期为灌浆期,R^(2)分别为0.646和0.647;基于卫星遥感光谱信息的稻米品质模型验证效果较好,解释率为51%~74%。可见,利用卫星遥感技术能够实现大范围水稻品质指标定量监测与评估。展开更多
Rice-duck co-culture is an integrated farming technology that benefits rice production, grain quality, and ecological sustainability in paddy fields. However, little is known about the effects of rice-duck co-culture ...Rice-duck co-culture is an integrated farming technology that benefits rice production, grain quality, and ecological sustainability in paddy fields. However, little is known about the effects of rice-duck co-culture on enzyme activity involved in the biosynthesis of 2-acetyl-1-pyrroline (2-AP), the volatile that gives fragrant rice its' distinctive and sought-after aroma. The present study aimed to examine the influence of rice-duck co-culture on the photosynthesis, yield, grain quality, rice aroma, and the enzymes involved in 2-acetyl-1-pyrroline biosynthesis in the cultivar Meixiangzhan 2 during the early and late rice growing seasons of 2016 in Guangzhou, China. We compared the rice grown in paddy fields with and without ducks. We found that rice-duck co-culture not only improved the yield and quality of fragrant rice grain, but also promoted the precursors of 2-AP biosynthesis formation and 2-AP accumulation in the grain. Grain 2-AP content in rice-duck co-culture was noticeably increased with 9.60% and 20.81% in early and late seasons, respectively. Proline and pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP biosynthesis) and the activity of enzymes such as proline dehydrogenase (ProDH), ornithine aminotransferase (OAT) and Δ1 pyrroline-5-carboxylic acid synthetase (P5CS) were all improved by 10.15%–12.99%, 32.91%–47.75%, 17.81%–26.71%, 6.25%–21.78%, and 10.58%–38.87% under rice-duck co-culture in both seasons, respectively. Overall, our results suggest that rice-duck co-culture is an environmentally-friendly and sustainable approach to improving rice aroma and grain quality of fragrant rice.展开更多
Grain shape as a major determinant of rice yield and quality is widely believed to be controlled by quantitative trait loci(QTL). We have identified a novel gene 'GS2' to largely regulate grain length and widt...Grain shape as a major determinant of rice yield and quality is widely believed to be controlled by quantitative trait loci(QTL). We have identified a novel gene 'GS2' to largely regulate grain length and width in rice. The GS2 allele in the big-grain rice line ‘CDL’functioned in a dominant manner. In the present study, we employed a chromosome walking strategy in the residual heterozygous lines from recombinant inbred population between cultivar 'R1126' and CDL, and located the GS2 gene in an interval of ~33.2 kb flanked by marker GL2-35-1 and GL2-12 in the long arm of rice chromosome 2. According to genome annotations, three putative gene loci, LOC_Os02g47280, LOC_Os02g47290 and LOC_Os02g47300, exist in this candidate region. In addition, allelic analysis with previously reported genes demonstrated that GS2 was novel for regulating rice grain shape. These results will help promote the cloning and functional characterization of the GS2 gene and further develop linked markers to be used in marker-assisted breeding.展开更多
The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmissi...The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that the addition of SiO2 to TiO2 thin films can suppress the grain growth of TiO2 crystal, increase the hydroxyl content on the surface of TiO2 films, lower the contact angle for water on TiO, films and enhance the hydrophilic property of TiO2 films. The super-hydrophilic TiO2/SiO2 photocatalytic composite thin films with the contact angle of 0((o) under bar) are obtained by the addition of 10%-20% SiO2 in mole fraction.展开更多
As a potent nucleating substrate forα-Mg grain,MgAl_(2)O_(4) powder was used to inoculate the Mg-Al melt in this study.The effects of MgAl_(2)O_(4)amount,holding time and Al content on the grain size and grain refini...As a potent nucleating substrate forα-Mg grain,MgAl_(2)O_(4) powder was used to inoculate the Mg-Al melt in this study.The effects of MgAl_(2)O_(4)amount,holding time and Al content on the grain size and grain refining ratio of the inoculated Mg-Al alloys are systematically investigated.The results show that the minimum grain size of Mg-3Al alloy is achieved by adding 2wt.%MgAl_(2)O_(4)powder and this alloy exhibits higher grain refining ratio than Mg-5Al and Mg-8Al alloys.The crystallographic misfit calculation indicates the wellmatching and possible orientation relationships(ORs)betweenα-Mg and MgAl_(2)O_(4).Among these predicted ORs,[10–10]α−Mg//[110]MgAl2O4 in(0002)α−Mg//(1–13)MgAl2O4 possesses the smallest misfit,i.e.,2.34%(fr).Both results of the experiment and crystallographic calculation demonstrate that the grain refinement of Mg-Al alloys is attributed to the MgAl_(2)O_(4)particles acting as the heterogeneous nucleation substrates forα-Mg grains.展开更多
Grain size is one of the most important factors affecting rice grain quality and yield,and attracts great attention from molecular biologists and breeders.In this study,we engineered a CRISPR/Cas9 system targeting the...Grain size is one of the most important factors affecting rice grain quality and yield,and attracts great attention from molecular biologists and breeders.In this study,we engineered a CRISPR/Cas9 system targeting the miR396 recognition site of the rice GS2 gene,which encodes growth-regulating factor 4(OsGRF4)and regulates multiple agronomic traits including grain size,grain quality,nitrogen use efficiency,abiotic stress response,and seed shattering.In contrast to most previous genome editing efforts in which indel mutations were chosen to obtain null mutants,a mutant named GS2^(E) carrying an in-frame 6-bp deletion and 1-bp substitution within the miR396-targeted sequence was identified.GS2^(E) plants showed increased expression of GS2 in consistent with impaired repression by miR396.As expected,the gain-of-function GS2^(E) mutant exhibited multiple beneficial traits including increased grain size and yield and bigger grain length/width ratio.Thousand grain weight and grain yield per plant of GS2^(E) plants were increased by 23.5%and 10.4%,respectively.These improved traits were passed to hybrids in a semidominant way,suggesting that the new GS2^(E) allele has great potential in rice improvement.Taken together,we report new GS2 germplasm and describe a novel gene-editing strategy that can be widely employed to improve grain size and yield in rice.This trait-improvement strategy could be applied to other genes containing miRNA target sites,in particular the conserved miR396-GRF/GIF module that governs plant growth,development and environmental response.展开更多
This paper presents the effects of different process parameters in producing Al-STi-1B grain refiner,i.e.various sequences and reaction time,on grain refinement efficiency of aluminum castings.It was found that differ...This paper presents the effects of different process parameters in producing Al-STi-1B grain refiner,i.e.various sequences and reaction time,on grain refinement efficiency of aluminum castings.It was found that different process parameters resulted in different morphology and size distribution of TiAl-3 and TiB-2 in grain refiner. The experiment was carried out by adding KBF-4 and K-2TiF-6 to molten aluminum.The melting temperature was controlled at 800℃in an electric resistance furnace.Three different sequences of KBF-4 and K-2TiF-6 additions were applied,i.e.,adding KBF-4 before K-2TiF-6,adding K-2TiF-4 before KBF-4 and mixing both KBF-4 and K-2TiF-6 before adding to molten aluminum.Three different holding time at 1 min,30 min and 60 min were applied.The results showed that no significant difference of morphology and size distribution was found by varying three different sequences.Whereas,the different holding time provided major differences in both morphology and size distribution,which are technically expectable from diffusion and agglomeration between particles resulting in larger particle size and wider range of size distribution of TiAI3 and TiB2.If the reaction time was longer than 30 rain,morphology of both TiAl-3 and TiB-2 became too large.If the reaction time was too short,less reaction between TiAl-3 and TiB2 to form would be obtained.For grain refinement efficiency, it was found that mixing KBF-4 and K-2TiF-6 before adding to molten aluminum with a holding time of 30 min resulted in best grain refinement efficiency.展开更多
Copper (Cu) is a special electrocatalyst for CO_(2) reduction reaction (CO_(2)RR) to multi-carbon products.Experimentally introducing grain boundaries (GBs) into Cu-based catalysts is an efficient strategy to improve ...Copper (Cu) is a special electrocatalyst for CO_(2) reduction reaction (CO_(2)RR) to multi-carbon products.Experimentally introducing grain boundaries (GBs) into Cu-based catalysts is an efficient strategy to improve the selectivity of C^(2+) products.However,it is still elusive for the C^(2+) product generation on Cu GBs due to the complex active sites.In this work,we found that the tandem catalysis pathway on adjacent active motifs of Cu GB is responsible for the enhanced activity for C^(2+)production by first principles calculations.By electronic structure analysis shows,the d-band center of GB site is close to the Fermi level than Cu(100) facet,the Cu atomic sites at grain boundary have shorter bond length and stronger bonding with*CO,which can enhance the adsorption of*CO at GB sites.Moreover,CO_(2)protonation is more favorable on the region Ⅲ motif (0.84 e V) than at Cu(100) site (1.35 e V).Meanwhile,the region Ⅱ motif also facilitate the C–C coupling (0.72 e V) compared to the Cu(100) motif (1.09 e V).Therefore,the region Ⅲ and Ⅱ motifs form a tandem catalysis pathway,which promotes the C^(2+)selectivity on Cu GBs.This work provides new insights into CO_(2)RR process.展开更多
Climate conditions is an important factor affected the fragrant rice growth and development.In order to study the effects of different planting seasons on fragrant rice performance in South China,present study was con...Climate conditions is an important factor affected the fragrant rice growth and development.In order to study the effects of different planting seasons on fragrant rice performance in South China,present study was conducted with three planting seasons(early season(April to July),middle season(June to September)and late season(August to November))and three fragrant rice cultivars,‘Basmati-385’,‘Meixiangzhan-2’and‘Xiangyaxiangzhan’.The results showed that the highest grain yield and grain 2-acetyl-1-pyrroline(2-AP,key component of fragrant rice aroma)content were both recorded in late season treatment while the fragrant rice in middle season treatment produced the lowest grain yield,grain filling percentage,1000-grain weight and gain 2-AP content.The highest contents of precursors(proline,pyrroline-5-carboxylic acid and 1-pyrro-line)which related to 2-AP biosynthesis were recorded in late season treatment compared with early season treatment and middle season treatment.The highest activities of enzymes(proline dehydrogenase,pyrroline-5-carboxylic acid synthetase and ornithine transaminase)which involved in 2-AP biosynthesis were also observed in late season treatment.Moreover,the fragrant rice cultivars in late season possessed the lowest chalk rice rate,chalkiness as well as the highest brown rice rate,head rice and protein content.Thus,the optimal season for fragrant rice production in South China is the late season.展开更多
The cathode-active materials, Li1+yMxMn2-xO4 (M = Al, Co, Ni, Zn, y = 0.02, x = 0.02) powder, were synthesized by sol-gel method using LiOH, Mn(NO3)2 as the starting materials, citric acid as a carrier and Al(NO...The cathode-active materials, Li1+yMxMn2-xO4 (M = Al, Co, Ni, Zn, y = 0.02, x = 0.02) powder, were synthesized by sol-gel method using LiOH, Mn(NO3)2 as the starting materials, citric acid as a carrier and Al(NO3)3·9H2O or Co(NO3)2·6H2O or Ni(NO3)2·6H2O or Zn(NO3)2·6H2O as dopants. The influence of different doping elements on the structural properties of the as-prepared samples was investigated by X-ray diffraction (XRD), infrared (IR) spectroscopy and scanning electron microscopy (SEM). X-ray diffraction patterns of the prepared samples were identified as the spinel structure with space group Fd3m. The grain size increases gradually as the sintering temperature rises and corresponding activation energies for the grain growth have been estimated using Arrhenius’ empirical relation.展开更多
Epoxiconazole is a triazole compound.However,the effects of epoxiconazole on crop productivity and quality were rarely reported.In this study,we investigated the effects of epoxiconazole application on yield formation...Epoxiconazole is a triazole compound.However,the effects of epoxiconazole on crop productivity and quality were rarely reported.In this study,we investigated the effects of epoxiconazole application on yield formation,grain quality attributes,and 2-acetyl-1-pyrroline(2-AP)content in fragrant rice.A three-year field experiment was carried out with a fragrant rice variety,Meixiangzhan 2.At the heading stage,0,0.02,0.04,0.08,0.16 and 0.32 g/L epoxiconazole solutions were foliar applied to fragrant rice plants,respectively.The results showed that epoxiconazole application significantly increased grain yield,seed-setting rate and 1000-grain weight.Chlorophyll content and net photosynthetic rate of fragrant rice during the grain-filling stage significantly increased due to epoxiconazole application.Foliar application of epoxiconazole at 0.08 g/L increased grain protein content and decreased both chalky rice rate and chalkiness area ratio of fragrant rice.Epoxiconazole also substantially increased grain 2-AP content by inducing the regulation in contents of related synthetic precursors,including proline,pyrroline-5-carboxylic acid,Δ1-pyrroline and methylglyoxal.Overall,foliar application of epoxiconazole could be used for the improvement in grain yield,grain quality and 2-AP content in fragrant rice production when applied concentration at 0.08-0.32 g/L.Our findings provided the new roles of epoxiconazole in crop production.展开更多
Electrochemical CO_(2)reduction reaction(CO_(2)RR)driven by sustainable energy has emerged as an attractive route to achieve the target of carbon neutral.Formate is one of the most economically viable products,and ele...Electrochemical CO_(2)reduction reaction(CO_(2)RR)driven by sustainable energy has emerged as an attractive route to achieve the target of carbon neutral.Formate is one of the most economically viable products,and electrocatalytic CO_(2)RR to formate is a promising technology.High-pressure H-cell electrolyzer is easy to operate and allows high CO_(2)solubility for realizing high current density,but the design of highly efficient catalysts for working under high CO_(2)pressures remains challenging.Bismuth-based catalysts exhibit high formate selectivity,but suffer from limited activity.Here,we report a high-performance catalyst,which is derived from BiPO_(4)nanopolyhedrons during electrocatalytic CO_(2)RR to formate in neutral solution under high CO_(2)pressures.A high partial current density of formate(534 mA cm^(−2))and formate formation rate(9.9 mmol h^(−1) cm^(−2))with a formate Faradaic efficiency of 90%have been achieved over BiPO_(4)-derived catalyst at an applied potential of−0.81 V vs.RHE under 3.0 MPa CO_(2)pressure.We discover that BiPO_(4)nanopolyhedrons evolve into metallic Bi nanosheets with rich grain boundaries in electrocatalytic CO_(2)RR under high CO_(2)pressures,and the grain boundaries of the BiPO_(4)-derived catalyst play a vital role in promoting electrocatalytic CO_(2)RR to formate.Our theoretical studies reveal that the charge redistribution occurs at the grain boundaries of Bi surface,and this promotes CO_(2)activation and increases HCOO^(*)intermediate stability,thus making the pathway for CO_(2)RR to formate more selective and energy-favorable.This work not only demonstrates a highly efficient catalyst for CO_(2)RR to formate but also discovers a unique feature of catalyst evolution under high CO_(2)pressures.展开更多
In-situ ZrB2/AZ91D magnesium matrix composite was successfully synthesized with AI/K2ZrF6+NH4BF4 by means of Direct Melt Reaction. The fabricated ZrB2/AZ91D magnesium matrix composite through direct melt mixing metho...In-situ ZrB2/AZ91D magnesium matrix composite was successfully synthesized with AI/K2ZrF6+NH4BF4 by means of Direct Melt Reaction. The fabricated ZrB2/AZ91D magnesium matrix composite through direct melt mixing method was investigated. Results from X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirmed the existence of ZrB2 particles in the AZ91D alloy, and most ZrB2 particles were in the size range of just several microns, some even to 100 nm. The cast specimens were studied through corrosion testing and heat treatment. The average grain size of AZ91D decreased markedly from about 250 pm to 50 IJm. In addition, the shape and size of the ,β-MglTAI12 phase as well as the morphologies of primary a-Mg in the magnesium matrix composite were greatly changed. The network structure of the β-MglTAI12 phase was broken into small blocks and the size of a-Mg decreased significantly.展开更多
Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on ...Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on the mechanical properties and wear behavior of the alloy were studied. The RUE process was carried out for 4 passes in total, starting at 0 ℃ and decreasing by 10 ℃ for each pass. The results showed that as the number of RUE passes increased, the grain refinement effect was obvious, and the second phase in the alloy was evenly distributed. Room temperature tensile properties of the alloy and the deepening of the RUE degree showed a positive correlation trend, which was due to the grain refinement, uniform distribution of the second phase and texture weakening. And the microhardness of the alloy showed that the microhardness of RUE is the largest in 2 passes. The change in microhardness was the result of dynamic competition between the softening effect of DRX and the work hardening effect. In addition, the wear resistance of the alloy showed a positive correlation with the degree of RUE under low load conditions. When the applied load was higher, the wear resistance of the alloy treated with RUE decreased compared to the initial state alloy. This phenomenon was mainly due to the presence of oxidative wear on the surface of the alloy, which could balance the positive contribution of severe plastic deformation to wear resistance to a certain extent.展开更多
Grain size is one of the most important agronomic components of grain yield. Grain length, width and thickness are controlled by multiple quantitative trait loci (QTLs). To understand genetic basis of large grain sh...Grain size is one of the most important agronomic components of grain yield. Grain length, width and thickness are controlled by multiple quantitative trait loci (QTLs). To understand genetic basis of large grain shape and explore the beneficial alleles for grain size improvement, we perform QTL analysis using an F2 population derived from a cross between the japonica variety Beilu 129 (BL129, wide and thick grain) and the elite indica variety Huazhan (HZ, narrow and long grain). A total number of eight major QTLs are detected on three different chromosomes. QTLs for grain width (qGW), grain thickness (qGT), brown grain width (qBGW), and brown grain thickness (qBGT) explained 77.67, 36.24, 89.63, and 39.41% of total phenotypic variation, respectively. The large grain rice variety BL129 possesses the beneficial alleles of GW2 and qSW5/ GW5, which have been known to control grain width and weight, indicating that the accumulation of the beneficial alleles causes large grain shape in BL129. Further results reveal that the rare gw2 allele from BL129 increases grain width, thickness and weight of the elite indica variety Huazhan, which is used as a parental line in hybrid rice breeding. Thus, our findings will help breeders to carry out molecular design breeding on rice grain size and shape.展开更多
文摘Micro molybdenum disulfide was prepared with one-step hydrothermal method;the influence of reactant concentration and temperature on the surface ratio of micro-MoS2 grain was investigated. Raman spectroscopy (Raman), X-ray diffraction (XRD), and Scanning electron microscopy (SEM) were used to characterize the structure, composition and morphology of MoS2. The results show that micro-MoS2 grains were synthesized with one-step hydrothermal synthesis, and the morphology of micro-MoS2 grains is like flower and sphere. The SEM figures indicate that the surface ratio of micro-MoS2 grains is different and also show that the surface ratio of micro-MoS2 grains can be improved by regulating reactant concentration and temperature. This research showed a method to improve the surface ratio of micro-MoS2 grains.
基金supported by the Hainan Province Science and Technology Special Fund(ZDYF2024SHFZ074,ZDYF2024SHFZ072,ZDYF2022SHFZ299)the National Natural Science Foundation of China(22109035,22202053,52164028,52274297,22309037)+4 种基金the Start-up Research Foundation of Hainan University(KYQD(ZR)-20008,20083,20084,21125,23035)the collaborative Innovation Center of Marine Science and Technology,Hainan University(XTCX2022HYC04,XTCX2022HYC05)the Innovative Research Projects for Graduate Students of Hainan Province(Qhyb2022-89,Qhyb2022-87,Qhys2022-174)the Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.23JK0439)the specific research fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202315)。
文摘Bismuth-based catalysts are highly promising for the electrochemical carbon dioxide reduction reaction(eCO_(2)RR)to formate product.However,achieving high activity and selectivity towards formate and ensuring long-term stability remains challenging.This work reports the oxygen plasma inducing strategy to construct the abundant grain boundaries of Bi/BiO_x on ultrathin two-dimensional Bi nanosheets.The oxygen plasma-treated Bi nanosheet(OP-Bi)exhibits over 90%Faradaic efficiency(FE)for formate at a wide potential range from-0.5 to-1.1 V,and maintains a great stability catalytic performance without significant decay over 30 h in flow cell.Moreover,membrane electrode assembly(MEA)device with OPBi as catalyst sustains the robust current density of 100 mA cm^(-2)over 50 h,maintaining a formate FE above 90%.In addition,rechargeable Zn-CO_(2)battery presents the peak power density of1.22 mW cm^(-2)with OP-Bi as bifunctional catalyst.The mechanism experiments demonstrate that the high-density grain boundaries of OP-Bi provide more exposed active sites,faster electron transfer capacity,and the stronger intrinsic activity of Bi atoms.In situ spectroscopy and theo retical calculations further elucidate that the unsaturated Bi coordination atoms between the grain boundaries can effectively activate CO_(2)molecules through elongating the C-O bond,and reducing the formation energy barrier of the key intermediate(^(*)OCOH),thereby enhancing the catalytic performance of eCO_(2)RR to formate product.
基金Projects(CSTC2013jcyj C60001,CSTC2013jcyj A50020,CSTC2014jcyjjq0041)supported by the Chongqing Science and Technology Commission,ChinaProjects(51531002,51171212,51474043)supported by the National Natural Science Foundation of China+1 种基金Projects(2013DFA71070,2013CB632200)supported by the National Science and Technology Program of ChinaProject(KJZH14101)supported by the Education Commission of Chongqing Municipality,China
文摘The Al2Ca intermetallic compound was prepared by melting process in a vacuum induction furnace. And the A12Ca compound was added in as-cast AZ31 alloys for grain refinement. The effect of its additional levels on grain refinement of as-cast AZ31 alloy was investigated and the mechanism of the grain refinement was discussed. The results reveal that the addition of 1.1% Al2Ca (mass fraction) decreases the average grain size of as-cast AZ31 alloy from 354 to 198 μm. And the thermal stability of the grains refined by Al2Ca is superior. The grain refining mechanism is attributed to the combined effects of solute and heterogeneous nucleation from the Al2Ca.
文摘本研究基于水稻孕穗期、抽穗期、灌浆期和成熟期4个生育期的Sentinel-2遥感数据,分析各生育期内卫星遥感光谱参数与稻米品质指标的关系,建立基于各生育期卫星光谱信息的水稻品质指标预测模型。将5种稻米品质指标分别与4个生育期内的光谱参数进行皮尔逊相关性分析,结果表明,5项品质指标在4个生育期内均与光谱参数有不同程度相关性。然后筛选出相关性效果显著的光谱参数,用于建立各品质指标的预测方程,建模结果表明,基于卫星遥感光谱信息解释率由大到小的稻米品质指标依次是精米率>长宽比>蛋白质含量>直链淀粉含量>糙米率;卫星遥感光谱反演稻米各品质指标所在的最佳生育期不同,糙米率和精米率的最佳生育期为抽穗期,其建模决定系数(Coefficient of Determination,R^(2))分别为0.461和0.893;长宽比的最佳生育期为成熟期,R^(2)为0.878;直链淀粉含量和蛋白质含量的最佳生育期为灌浆期,R^(2)分别为0.646和0.647;基于卫星遥感光谱信息的稻米品质模型验证效果较好,解释率为51%~74%。可见,利用卫星遥感技术能够实现大范围水稻品质指标定量监测与评估。
基金supported by the Science and Technology Project of Guangdong Province (2015B090903077, 2016A020210094, 2017A090905030), Chinathe Science and Technology Project of Guangzhou (201604020062), China+1 种基金the Innovation Team Construction Project of Modern Agricultural Industry Technology System of Guangdong Province (2016LM1100), Chinathe Overseas Joint Doctoral Training Program of South China Agricultural University (2018LHPY010), China
文摘Rice-duck co-culture is an integrated farming technology that benefits rice production, grain quality, and ecological sustainability in paddy fields. However, little is known about the effects of rice-duck co-culture on enzyme activity involved in the biosynthesis of 2-acetyl-1-pyrroline (2-AP), the volatile that gives fragrant rice its' distinctive and sought-after aroma. The present study aimed to examine the influence of rice-duck co-culture on the photosynthesis, yield, grain quality, rice aroma, and the enzymes involved in 2-acetyl-1-pyrroline biosynthesis in the cultivar Meixiangzhan 2 during the early and late rice growing seasons of 2016 in Guangzhou, China. We compared the rice grown in paddy fields with and without ducks. We found that rice-duck co-culture not only improved the yield and quality of fragrant rice grain, but also promoted the precursors of 2-AP biosynthesis formation and 2-AP accumulation in the grain. Grain 2-AP content in rice-duck co-culture was noticeably increased with 9.60% and 20.81% in early and late seasons, respectively. Proline and pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP biosynthesis) and the activity of enzymes such as proline dehydrogenase (ProDH), ornithine aminotransferase (OAT) and Δ1 pyrroline-5-carboxylic acid synthetase (P5CS) were all improved by 10.15%–12.99%, 32.91%–47.75%, 17.81%–26.71%, 6.25%–21.78%, and 10.58%–38.87% under rice-duck co-culture in both seasons, respectively. Overall, our results suggest that rice-duck co-culture is an environmentally-friendly and sustainable approach to improving rice aroma and grain quality of fragrant rice.
基金supported by the National High Technology Research and Development Program of China (2011AA10A101)the Hunan Provincial Natural Science Foundation of China (10JJ2025)
文摘Grain shape as a major determinant of rice yield and quality is widely believed to be controlled by quantitative trait loci(QTL). We have identified a novel gene 'GS2' to largely regulate grain length and width in rice. The GS2 allele in the big-grain rice line ‘CDL’functioned in a dominant manner. In the present study, we employed a chromosome walking strategy in the residual heterozygous lines from recombinant inbred population between cultivar 'R1126' and CDL, and located the GS2 gene in an interval of ~33.2 kb flanked by marker GL2-35-1 and GL2-12 in the long arm of rice chromosome 2. According to genome annotations, three putative gene loci, LOC_Os02g47280, LOC_Os02g47290 and LOC_Os02g47300, exist in this candidate region. In addition, allelic analysis with previously reported genes demonstrated that GS2 was novel for regulating rice grain shape. These results will help promote the cloning and functional characterization of the GS2 gene and further develop linked markers to be used in marker-assisted breeding.
基金This work was financially supported by the Foundation for University Key Teachers by the Ministry of Education, theKey Resear
文摘The uniform transparent TiO2/SiO2 photocatalytic composite thin films are prepared by sol-gel method on the soda lime glass substrates, and characterized by UV-visible spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area, FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that the addition of SiO2 to TiO2 thin films can suppress the grain growth of TiO2 crystal, increase the hydroxyl content on the surface of TiO2 films, lower the contact angle for water on TiO, films and enhance the hydrophilic property of TiO2 films. The super-hydrophilic TiO2/SiO2 photocatalytic composite thin films with the contact angle of 0((o) under bar) are obtained by the addition of 10%-20% SiO2 in mole fraction.
基金This work was supported by the National Natural Science Foundation of China(51871100).
文摘As a potent nucleating substrate forα-Mg grain,MgAl_(2)O_(4) powder was used to inoculate the Mg-Al melt in this study.The effects of MgAl_(2)O_(4)amount,holding time and Al content on the grain size and grain refining ratio of the inoculated Mg-Al alloys are systematically investigated.The results show that the minimum grain size of Mg-3Al alloy is achieved by adding 2wt.%MgAl_(2)O_(4)powder and this alloy exhibits higher grain refining ratio than Mg-5Al and Mg-8Al alloys.The crystallographic misfit calculation indicates the wellmatching and possible orientation relationships(ORs)betweenα-Mg and MgAl_(2)O_(4).Among these predicted ORs,[10–10]α−Mg//[110]MgAl2O4 in(0002)α−Mg//(1–13)MgAl2O4 possesses the smallest misfit,i.e.,2.34%(fr).Both results of the experiment and crystallographic calculation demonstrate that the grain refinement of Mg-Al alloys is attributed to the MgAl_(2)O_(4)particles acting as the heterogeneous nucleation substrates forα-Mg grains.
基金supported by the National Key Research and Development Program of China(2016YFD0102000)“Breeding of Major New Varieties of Main Grain Crops”Program(2020ABA016)from Department of Science and Technology of Hubei Province.
文摘Grain size is one of the most important factors affecting rice grain quality and yield,and attracts great attention from molecular biologists and breeders.In this study,we engineered a CRISPR/Cas9 system targeting the miR396 recognition site of the rice GS2 gene,which encodes growth-regulating factor 4(OsGRF4)and regulates multiple agronomic traits including grain size,grain quality,nitrogen use efficiency,abiotic stress response,and seed shattering.In contrast to most previous genome editing efforts in which indel mutations were chosen to obtain null mutants,a mutant named GS2^(E) carrying an in-frame 6-bp deletion and 1-bp substitution within the miR396-targeted sequence was identified.GS2^(E) plants showed increased expression of GS2 in consistent with impaired repression by miR396.As expected,the gain-of-function GS2^(E) mutant exhibited multiple beneficial traits including increased grain size and yield and bigger grain length/width ratio.Thousand grain weight and grain yield per plant of GS2^(E) plants were increased by 23.5%and 10.4%,respectively.These improved traits were passed to hybrids in a semidominant way,suggesting that the new GS2^(E) allele has great potential in rice improvement.Taken together,we report new GS2 germplasm and describe a novel gene-editing strategy that can be widely employed to improve grain size and yield in rice.This trait-improvement strategy could be applied to other genes containing miRNA target sites,in particular the conserved miR396-GRF/GIF module that governs plant growth,development and environmental response.
文摘This paper presents the effects of different process parameters in producing Al-STi-1B grain refiner,i.e.various sequences and reaction time,on grain refinement efficiency of aluminum castings.It was found that different process parameters resulted in different morphology and size distribution of TiAl-3 and TiB-2 in grain refiner. The experiment was carried out by adding KBF-4 and K-2TiF-6 to molten aluminum.The melting temperature was controlled at 800℃in an electric resistance furnace.Three different sequences of KBF-4 and K-2TiF-6 additions were applied,i.e.,adding KBF-4 before K-2TiF-6,adding K-2TiF-4 before KBF-4 and mixing both KBF-4 and K-2TiF-6 before adding to molten aluminum.Three different holding time at 1 min,30 min and 60 min were applied.The results showed that no significant difference of morphology and size distribution was found by varying three different sequences.Whereas,the different holding time provided major differences in both morphology and size distribution,which are technically expectable from diffusion and agglomeration between particles resulting in larger particle size and wider range of size distribution of TiAI3 and TiB2.If the reaction time was longer than 30 rain,morphology of both TiAl-3 and TiB-2 became too large.If the reaction time was too short,less reaction between TiAl-3 and TiB2 to form would be obtained.For grain refinement efficiency, it was found that mixing KBF-4 and K-2TiF-6 before adding to molten aluminum with a holding time of 30 min resulted in best grain refinement efficiency.
基金the National Natural Science Foundation of China(21872174,22002189,U1932148)the International Science and Technology Cooperation Program(2017YFE0127800,2018YFE0203402)+5 种基金the Hunan Provincial Science and Technology Program(2017XK2026)the Hunan Province Key Field R&D Program(2020WK2002)the Hunan Provincial Natural Science Foundation of China(2020JJ2041,2020JJ5691)the Shenzhen Science and Technology Innovation Project(JCYJ20180307151313532)the Fundamental Research Funds for the Central Universities of Central South University。
文摘Copper (Cu) is a special electrocatalyst for CO_(2) reduction reaction (CO_(2)RR) to multi-carbon products.Experimentally introducing grain boundaries (GBs) into Cu-based catalysts is an efficient strategy to improve the selectivity of C^(2+) products.However,it is still elusive for the C^(2+) product generation on Cu GBs due to the complex active sites.In this work,we found that the tandem catalysis pathway on adjacent active motifs of Cu GB is responsible for the enhanced activity for C^(2+)production by first principles calculations.By electronic structure analysis shows,the d-band center of GB site is close to the Fermi level than Cu(100) facet,the Cu atomic sites at grain boundary have shorter bond length and stronger bonding with*CO,which can enhance the adsorption of*CO at GB sites.Moreover,CO_(2)protonation is more favorable on the region Ⅲ motif (0.84 e V) than at Cu(100) site (1.35 e V).Meanwhile,the region Ⅱ motif also facilitate the C–C coupling (0.72 e V) compared to the Cu(100) motif (1.09 e V).Therefore,the region Ⅲ and Ⅱ motifs form a tandem catalysis pathway,which promotes the C^(2+)selectivity on Cu GBs.This work provides new insights into CO_(2)RR process.
基金This work was supported by National Natural Science Foundation of China(31271646)Agricultural and Rural Department Foundation of Guangdong Province(2018kczx06)+1 种基金Special fund for scientific innovation strategy-construction of high-level Academy of Agriculture Science(R2019QD-002)Key Areas Research Projects of Guangdong Province(2020B020225004)and(2018B020202004).
文摘Climate conditions is an important factor affected the fragrant rice growth and development.In order to study the effects of different planting seasons on fragrant rice performance in South China,present study was conducted with three planting seasons(early season(April to July),middle season(June to September)and late season(August to November))and three fragrant rice cultivars,‘Basmati-385’,‘Meixiangzhan-2’and‘Xiangyaxiangzhan’.The results showed that the highest grain yield and grain 2-acetyl-1-pyrroline(2-AP,key component of fragrant rice aroma)content were both recorded in late season treatment while the fragrant rice in middle season treatment produced the lowest grain yield,grain filling percentage,1000-grain weight and gain 2-AP content.The highest contents of precursors(proline,pyrroline-5-carboxylic acid and 1-pyrro-line)which related to 2-AP biosynthesis were recorded in late season treatment compared with early season treatment and middle season treatment.The highest activities of enzymes(proline dehydrogenase,pyrroline-5-carboxylic acid synthetase and ornithine transaminase)which involved in 2-AP biosynthesis were also observed in late season treatment.Moreover,the fragrant rice cultivars in late season possessed the lowest chalk rice rate,chalkiness as well as the highest brown rice rate,head rice and protein content.Thus,the optimal season for fragrant rice production in South China is the late season.
基金This work was supported by the National Natural Science Foundation of China (60671010)Natural Science Foundation of Shandong Province (Y2006B29)
文摘The cathode-active materials, Li1+yMxMn2-xO4 (M = Al, Co, Ni, Zn, y = 0.02, x = 0.02) powder, were synthesized by sol-gel method using LiOH, Mn(NO3)2 as the starting materials, citric acid as a carrier and Al(NO3)3·9H2O or Co(NO3)2·6H2O or Ni(NO3)2·6H2O or Zn(NO3)2·6H2O as dopants. The influence of different doping elements on the structural properties of the as-prepared samples was investigated by X-ray diffraction (XRD), infrared (IR) spectroscopy and scanning electron microscopy (SEM). X-ray diffraction patterns of the prepared samples were identified as the spinel structure with space group Fd3m. The grain size increases gradually as the sintering temperature rises and corresponding activation energies for the grain growth have been estimated using Arrhenius’ empirical relation.
基金This study was supported by the National Natural Science Foundation of China(Grant No.31971843)the Technology System of Modern Agricultural Industry in Guangdong(Grant No.2020KJ105)Guangzhou Science and Technology Project in China(Grant No.202103000075).
文摘Epoxiconazole is a triazole compound.However,the effects of epoxiconazole on crop productivity and quality were rarely reported.In this study,we investigated the effects of epoxiconazole application on yield formation,grain quality attributes,and 2-acetyl-1-pyrroline(2-AP)content in fragrant rice.A three-year field experiment was carried out with a fragrant rice variety,Meixiangzhan 2.At the heading stage,0,0.02,0.04,0.08,0.16 and 0.32 g/L epoxiconazole solutions were foliar applied to fragrant rice plants,respectively.The results showed that epoxiconazole application significantly increased grain yield,seed-setting rate and 1000-grain weight.Chlorophyll content and net photosynthetic rate of fragrant rice during the grain-filling stage significantly increased due to epoxiconazole application.Foliar application of epoxiconazole at 0.08 g/L increased grain protein content and decreased both chalky rice rate and chalkiness area ratio of fragrant rice.Epoxiconazole also substantially increased grain 2-AP content by inducing the regulation in contents of related synthetic precursors,including proline,pyrroline-5-carboxylic acid,Δ1-pyrroline and methylglyoxal.Overall,foliar application of epoxiconazole could be used for the improvement in grain yield,grain quality and 2-AP content in fragrant rice production when applied concentration at 0.08-0.32 g/L.Our findings provided the new roles of epoxiconazole in crop production.
文摘Electrochemical CO_(2)reduction reaction(CO_(2)RR)driven by sustainable energy has emerged as an attractive route to achieve the target of carbon neutral.Formate is one of the most economically viable products,and electrocatalytic CO_(2)RR to formate is a promising technology.High-pressure H-cell electrolyzer is easy to operate and allows high CO_(2)solubility for realizing high current density,but the design of highly efficient catalysts for working under high CO_(2)pressures remains challenging.Bismuth-based catalysts exhibit high formate selectivity,but suffer from limited activity.Here,we report a high-performance catalyst,which is derived from BiPO_(4)nanopolyhedrons during electrocatalytic CO_(2)RR to formate in neutral solution under high CO_(2)pressures.A high partial current density of formate(534 mA cm^(−2))and formate formation rate(9.9 mmol h^(−1) cm^(−2))with a formate Faradaic efficiency of 90%have been achieved over BiPO_(4)-derived catalyst at an applied potential of−0.81 V vs.RHE under 3.0 MPa CO_(2)pressure.We discover that BiPO_(4)nanopolyhedrons evolve into metallic Bi nanosheets with rich grain boundaries in electrocatalytic CO_(2)RR under high CO_(2)pressures,and the grain boundaries of the BiPO_(4)-derived catalyst play a vital role in promoting electrocatalytic CO_(2)RR to formate.Our theoretical studies reveal that the charge redistribution occurs at the grain boundaries of Bi surface,and this promotes CO_(2)activation and increases HCOO^(*)intermediate stability,thus making the pathway for CO_(2)RR to formate more selective and energy-favorable.This work not only demonstrates a highly efficient catalyst for CO_(2)RR to formate but also discovers a unique feature of catalyst evolution under high CO_(2)pressures.
基金financially supported by the Specialized Research Fund Project for the Doctoral Program of Higher Education of China (No.20070299004)the Jiangsu Higher Education Institutions Natural Science Foundation Research Program (No.10KJD430003)+2 种基金the Jiangsu University Outstanding Talents Building Project (No.1213000004)the Jiangsu University Undergraduate Practice-Innovation Training Project (No.1201220038)Doctoral Foundation of Jiangsu University (No.1281220014)
文摘In-situ ZrB2/AZ91D magnesium matrix composite was successfully synthesized with AI/K2ZrF6+NH4BF4 by means of Direct Melt Reaction. The fabricated ZrB2/AZ91D magnesium matrix composite through direct melt mixing method was investigated. Results from X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) confirmed the existence of ZrB2 particles in the AZ91D alloy, and most ZrB2 particles were in the size range of just several microns, some even to 100 nm. The cast specimens were studied through corrosion testing and heat treatment. The average grain size of AZ91D decreased markedly from about 250 pm to 50 IJm. In addition, the shape and size of the ,β-MglTAI12 phase as well as the morphologies of primary a-Mg in the magnesium matrix composite were greatly changed. The network structure of the β-MglTAI12 phase was broken into small blocks and the size of a-Mg decreased significantly.
基金financially supported by the Natural Science Foundation of Shanxi Province (No. 201901D111176)the Joint Funds of the National Natural Science Foundation of china (Grant No. U20A20230)+3 种基金the Bureau of science, technology and industry for National Defense of China (No. WDZC2019JJ006)the Key R&D program of Shanxi Province (International Cooperation) (No. 201903D421036)the National Natural Science Foundation of China (Grant No. 52075501)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2018002)。
文摘Based on the deforming technique of severe plastic deformation(SPD), the grain refinement of a Mg-9Gd-3Y-2Zn-0.5Zr alloy treated with decreasing temperature reciprocating upsetting-extrusion(RUE) and its influence on the mechanical properties and wear behavior of the alloy were studied. The RUE process was carried out for 4 passes in total, starting at 0 ℃ and decreasing by 10 ℃ for each pass. The results showed that as the number of RUE passes increased, the grain refinement effect was obvious, and the second phase in the alloy was evenly distributed. Room temperature tensile properties of the alloy and the deepening of the RUE degree showed a positive correlation trend, which was due to the grain refinement, uniform distribution of the second phase and texture weakening. And the microhardness of the alloy showed that the microhardness of RUE is the largest in 2 passes. The change in microhardness was the result of dynamic competition between the softening effect of DRX and the work hardening effect. In addition, the wear resistance of the alloy showed a positive correlation with the degree of RUE under low load conditions. When the applied load was higher, the wear resistance of the alloy treated with RUE decreased compared to the initial state alloy. This phenomenon was mainly due to the presence of oxidative wear on the surface of the alloy, which could balance the positive contribution of severe plastic deformation to wear resistance to a certain extent.
基金supported by grants from the National Basic Research Program of China(2013CBA01401)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA08020108)the Platform Construction Programs of Key Laboratory and Engineering Technology Research Center,Department of Science and Technology of Hainan Province,China(ZDZX2013023)
文摘Grain size is one of the most important agronomic components of grain yield. Grain length, width and thickness are controlled by multiple quantitative trait loci (QTLs). To understand genetic basis of large grain shape and explore the beneficial alleles for grain size improvement, we perform QTL analysis using an F2 population derived from a cross between the japonica variety Beilu 129 (BL129, wide and thick grain) and the elite indica variety Huazhan (HZ, narrow and long grain). A total number of eight major QTLs are detected on three different chromosomes. QTLs for grain width (qGW), grain thickness (qGT), brown grain width (qBGW), and brown grain thickness (qBGT) explained 77.67, 36.24, 89.63, and 39.41% of total phenotypic variation, respectively. The large grain rice variety BL129 possesses the beneficial alleles of GW2 and qSW5/ GW5, which have been known to control grain width and weight, indicating that the accumulation of the beneficial alleles causes large grain shape in BL129. Further results reveal that the rare gw2 allele from BL129 increases grain width, thickness and weight of the elite indica variety Huazhan, which is used as a parental line in hybrid rice breeding. Thus, our findings will help breeders to carry out molecular design breeding on rice grain size and shape.