Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface e...Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.展开更多
We developed a set of in-situ Micro-Raman spectroscopy system for autoclave experimental apparatus because of the scientific significance of in-situ Micro-Raman spectroscopy system under the high-pressure hydrothermal...We developed a set of in-situ Micro-Raman spectroscopy system for autoclave experimental apparatus because of the scientific significance of in-situ Micro-Raman spectroscopy system under the high-pressure hydrothermal condition.We used this system to measure the Raman spectrum of water-fluid and quartz crystal at the temperature ranging from 125 to 420℃.The signal-tonoise ratio of the Raman signal is good.展开更多
It is important to acquire the composition of Si1-xGex layer, especially that with high Ge content, epitaxied on Si substrate. Two nondestructive examination methods, double crystals X-ray diffraction (DCXRD) and mi...It is important to acquire the composition of Si1-xGex layer, especially that with high Ge content, epitaxied on Si substrate. Two nondestructive examination methods, double crystals X-ray diffraction (DCXRD) and micro-Raman measurement, were introduced comparatively to determine x value in Si1-xGex layer, which show that while the two methods are consistent with each other when x is low, the results obtained from double crystals X-ray diffraction are not credible due to the large strain relaxation occurring in Si1-xGex layers when Ge content is higher than about 20%. Micro-Raman measurement is more appropriate for determining high Ge content than DCXRD.展开更多
To investigate the damage profiles of high-fluence low-energy proton irradiation on superconducting materials and related devices, Raman characterization and electrical transport measurement of 40-keV-proton irradiate...To investigate the damage profiles of high-fluence low-energy proton irradiation on superconducting materials and related devices, Raman characterization and electrical transport measurement of 40-keV-proton irradiated YBa_2Cu_3O_(7-x)(YBCO) thin films are carried out. From micro-Raman spectroscopy and x-ray diffraction studies, the main component of proton-radiation-induced defects is found to be the partial transition of superconducting orthorhombic phase to the semiconducting tetragonal phase and non-superconducting secondary phase. The results indicate that the defects induced in the conducting CuO_2 planes, such as increased oxygen vacancies and interstitials, can result in an increase in the resistivity but a decrease in the transition temperature TCwith the increase in the fluence of proton irradiation, which is confirmed in the electrical transport measurements. Especially, zero-resistance temperature TC_0 is not observed at a fluence of 10^(15)p/cm^2.Furthermore, the variation of activation energy U_0 can be explained by the plastic-flux creep theory, which indicates that the plastic deformation and entanglement of vortices in a weakly pinned vortex liquid are caused by disorders of point-like defects. Point-like disorders are demonstrated to be the main contribution to the low-energy proton radiation damage in YBCO thin films. These disorders are likely to cause flux creep by thermally assisted flux flow, which may increase noise and reduce the precision of superconducting devices.展开更多
In this work, we are interesting in the measurement of thermal conductivity (on the surface and in-depth) of Porous silicon by the micro-Raman spectroscopy. This direct method (micro-Raman spectroscopy) enabled us to ...In this work, we are interesting in the measurement of thermal conductivity (on the surface and in-depth) of Porous silicon by the micro-Raman spectroscopy. This direct method (micro-Raman spectroscopy) enabled us to develop a systematic means of investigation of the morphology and the thermal conductivity of Porous silicon oxidized or no. The thermal conductivity is studied according to the parameters of anodization and fraction of silicon oxidized. Thermal transport in the porous silicon layers is limited by its porous nature and the blocking of transport in the silicon skeleton what supports its use in the thermal sensors.展开更多
Polarized micro-Raman spectra of a 0.65PbMgl/3Nb2/303 0.35PbTiO3 (0.65PMN-0.35PT) single crystal poled in the [001] direction are obtained in a wide frequency range (50 2000 cm^-1) at different temperatures. The b...Polarized micro-Raman spectra of a 0.65PbMgl/3Nb2/303 0.35PbTiO3 (0.65PMN-0.35PT) single crystal poled in the [001] direction are obtained in a wide frequency range (50 2000 cm^-1) at different temperatures. The best fit to the Raman spectrum at 77 K is achieved using 17 Lorenzians to convolute into it, and this is proved to be a reasonable fit. According to the group theory and selection rules of overtone and combinational modes, apart from the seven Raman modes that are from first-order Raman scattering, the remaining ones are attributed to being from second-order Raman scattering. A comparison between the experimental results and theoretical predictions shows that they are in satisfactory agreement with each other. Our results indicate that at 77 K the sample belongs to the rhombohedral symmetry with the C^53v(R3m) space group (Z = 1). In our study, on heating, the 0.65PMN 0.35PT single crystal undergoes a rhombohedral → tetragonal → cubic phase transition sequence. The two phase transitions occur at 340 and 440 K, which correspond to the disappearance of the soft mode near 106 cm-1 recorded in VV polarization and the vanishing of the band around 780 cm^-1 in VH polarization, respectively.展开更多
The Darhib mine is one of the several talc deposits in the Hamata area of southeastern Egypt. Several specimens of minerals coming from this mine were subjected to complementary investigation by micro-Raman spectromet...The Darhib mine is one of the several talc deposits in the Hamata area of southeastern Egypt. Several specimens of minerals coming from this mine were subjected to complementary investigation by micro-Raman spectrometry and scanning electron microscopy. The difficulty in their identification is the appearance of most of them: they are all very small and only visible under the mineral binocular microscope(×10 - ×40). They appear as small crystals in fissures and holes and a visual determination on colour and crystal gives only a guess of what kind of mineral it could be. Therefore, only after analyzing them by micro-Raman and scanning electron microscopy it was possible to identify their structure and they can be divided in three main groups: one is quite generic and several minerals of different species were identified, such as quartz, talc, mottramite and chrysocolla, very common in the talc mine (these ones are Si-based minerals);the other one is constituted by four samples which are Zn and/or Cu rich, which means minerals of the rosasite or aurichalcite groups;the last group is constituted by two samples containing mainly Pb..展开更多
目的应用磁共振波谱(Magnetic Resonance Spectrum,MRS)及磁共振弥散张量成像(Diffusion Ten sor Imaging,DTI)检测代谢综合征(metabolic syndrome,MS)患者的脑内代谢物、脑部各向异性(fractional anisotro py,FA)值,早期发现亚临床脑...目的应用磁共振波谱(Magnetic Resonance Spectrum,MRS)及磁共振弥散张量成像(Diffusion Ten sor Imaging,DTI)检测代谢综合征(metabolic syndrome,MS)患者的脑内代谢物、脑部各向异性(fractional anisotro py,FA)值,早期发现亚临床脑细胞损害。方法选取病程5年以上、无神经系统损害临床表现的MS患者15例为患者组,及健康体检者17名为对照组,检查一般项目(身高、体重、血压、血糖、血脂、神经功能相关量表评分),并行头颅MRI、DWI、MRS和DTI检查,测定脑部背侧丘脑、扣带回后部、侧脑室后角NAA/Cr、Cho/Cr、NAA/Cho的比值及内囊后肢、放射冠区FA值,所测得结果在患者组和对照组,以及患者组中3项代谢异常者与对照组、患者组中2项代谢异常者与对照组间进行比较。结果患者组、患者组中3项代谢异常者、患者组中2项代谢异常者NAA/Cr、NAA/Cho在背侧丘脑、扣带回后部、侧脑室后角均低于对照组,差异有统计学意义(均P<0.05),Cho/Cr在扣带回后部、侧脑室后角高于对照组,差异有统计学意义(均P<0.05)。患者组双侧内囊后肢、右放射冠区FA值均低于对照组(均P﹤0.05);患者组3项代谢异常者双侧内囊后肢及右放射冠区较对照组降低(均P﹤0.05);患者组2项代谢异常者仅右侧放射冠区较对照组降低(P﹤0.05)。结论病程5年以上的MS患者在背侧丘脑、扣带回后部、侧脑室后角的脑细胞代谢及在内囊后肢、放射冠区的神经纤维微结构已有损害。展开更多
This study emphasizes on the evaluation and comparison of the anticorrosive properties of sol-gel coatings with and without inhibitor loaded nanocontainers.In this case,naturally available clay nanotubes(halloysite)we...This study emphasizes on the evaluation and comparison of the anticorrosive properties of sol-gel coatings with and without inhibitor loaded nanocontainers.In this case,naturally available clay nanotubes(halloysite)were loaded with cationic corrosion inhibitors Ce 3+/Zr 4+.These nanocontainers were dispersed in hybrid organic-inorganic sol-gel matrix sol.Coating was applied on magnesium alloy AZ91D using the sols containing modified and unmodified nanocontainers employing the dip coating method and cured at 130℃for 1 h in air.Corrosion resistance of coated/uncoated substrates were analyzed using electrochemical impedance spectroscopy,potentiodynamic polarization and weight loss measurements after exposure to 3.5 wt%NaCl solution for varying time durations between 24 h to 120 h.Self-healing ability of coatings was evaluated by micro-Raman spectroscopy after 120 h exposure to 3.5 wt%NaCl solution.Coatings generated after dispersion of corrosion inhibitor loaded clay in hybrid sol-gel matrix have shown more promising corrosion resistance when compared to just the sol-gel matrix coatings,after prolonged exposure to corrosive environment.展开更多
We propose an experimental approach for investigation of the polycrystalline deformation behaviour at a grain scale. The technique is characterized by the joint application of micro material testing systems and the in...We propose an experimental approach for investigation of the polycrystalline deformation behaviour at a grain scale. The technique is characterized by the joint application of micro material testing systems and the intragranular deformation analysis methods, It is attempting to map the deformation evolution at grain scale during the elastic and plastic deformations of polycrystalline specimens.展开更多
Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs) under different cycles of thermal shock loading of 1 100℃ was investi- gated by the microscopic digital image correlation (DIC) and ...Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs) under different cycles of thermal shock loading of 1 100℃ was investi- gated by the microscopic digital image correlation (DIC) and micro-Raman spec- troscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress under- goes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1 100℃, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO) layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.展开更多
基金supported by the National Basic Research Program of China (Grant 2012CB937500)the National Natural Science Foundation of China (Grants 11422219, 11227202, 11372217, 11272232)+1 种基金the Program for New Century Excellent Talents in University (Grant NCET-13)China Scholarship Council (201308120092)
文摘Si-based multilayer structures are widely used in current microelectronics. During their preparation, some inhomogeneous residual stress is induced, resulting in competition between interface mismatching and surface energy and even leading to structure failure. This work presents a methodological study on the measurement of residual stress in a multi-layer semiconductor heterostructure. Scanning electron microscopy(SEM), micro-Raman spectroscopy(MRS), and transmission electron microscopy(TEM) were applied to measure the geometric parameters of the multilayer structure. The relationship between the Raman spectrum and the stress/strain on the [100] and [110] crystal orientations was determined to enable surface and crosssection residual stress analyses, respectively. Based on the Raman mapping results, the distribution of residual stress along the depth of the multi-layer heterostructure was successfully obtained.
基金supported by the National Key R&D Program of China(Grant No.2016YFC0600104)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB 18010401)。
文摘We developed a set of in-situ Micro-Raman spectroscopy system for autoclave experimental apparatus because of the scientific significance of in-situ Micro-Raman spectroscopy system under the high-pressure hydrothermal condition.We used this system to measure the Raman spectrum of water-fluid and quartz crystal at the temperature ranging from 125 to 420℃.The signal-tonoise ratio of the Raman signal is good.
基金This work is supported by the National Natural Science Foundation of China (Grant Nos. 60336010 & 90401001)973 Program (Grant No. TG 2000036603)the Student Innovation Program of CAS (No. 1731000500010).
文摘It is important to acquire the composition of Si1-xGex layer, especially that with high Ge content, epitaxied on Si substrate. Two nondestructive examination methods, double crystals X-ray diffraction (DCXRD) and micro-Raman measurement, were introduced comparatively to determine x value in Si1-xGex layer, which show that while the two methods are consistent with each other when x is low, the results obtained from double crystals X-ray diffraction are not credible due to the large strain relaxation occurring in Si1-xGex layers when Ge content is higher than about 20%. Micro-Raman measurement is more appropriate for determining high Ge content than DCXRD.
基金Project supported by the National Natural Science Foundation of China(Grant No.61473023)the Aerospace Science and Technology Innovation Fund,CASCInternational S&T Cooperation Program of China(ISTCP)(Grant No.2015DFR80190)
文摘To investigate the damage profiles of high-fluence low-energy proton irradiation on superconducting materials and related devices, Raman characterization and electrical transport measurement of 40-keV-proton irradiated YBa_2Cu_3O_(7-x)(YBCO) thin films are carried out. From micro-Raman spectroscopy and x-ray diffraction studies, the main component of proton-radiation-induced defects is found to be the partial transition of superconducting orthorhombic phase to the semiconducting tetragonal phase and non-superconducting secondary phase. The results indicate that the defects induced in the conducting CuO_2 planes, such as increased oxygen vacancies and interstitials, can result in an increase in the resistivity but a decrease in the transition temperature TCwith the increase in the fluence of proton irradiation, which is confirmed in the electrical transport measurements. Especially, zero-resistance temperature TC_0 is not observed at a fluence of 10^(15)p/cm^2.Furthermore, the variation of activation energy U_0 can be explained by the plastic-flux creep theory, which indicates that the plastic deformation and entanglement of vortices in a weakly pinned vortex liquid are caused by disorders of point-like defects. Point-like disorders are demonstrated to be the main contribution to the low-energy proton radiation damage in YBCO thin films. These disorders are likely to cause flux creep by thermally assisted flux flow, which may increase noise and reduce the precision of superconducting devices.
文摘In this work, we are interesting in the measurement of thermal conductivity (on the surface and in-depth) of Porous silicon by the micro-Raman spectroscopy. This direct method (micro-Raman spectroscopy) enabled us to develop a systematic means of investigation of the morphology and the thermal conductivity of Porous silicon oxidized or no. The thermal conductivity is studied according to the parameters of anodization and fraction of silicon oxidized. Thermal transport in the porous silicon layers is limited by its porous nature and the blocking of transport in the silicon skeleton what supports its use in the thermal sensors.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10674171 and 10874236)
文摘Polarized micro-Raman spectra of a 0.65PbMgl/3Nb2/303 0.35PbTiO3 (0.65PMN-0.35PT) single crystal poled in the [001] direction are obtained in a wide frequency range (50 2000 cm^-1) at different temperatures. The best fit to the Raman spectrum at 77 K is achieved using 17 Lorenzians to convolute into it, and this is proved to be a reasonable fit. According to the group theory and selection rules of overtone and combinational modes, apart from the seven Raman modes that are from first-order Raman scattering, the remaining ones are attributed to being from second-order Raman scattering. A comparison between the experimental results and theoretical predictions shows that they are in satisfactory agreement with each other. Our results indicate that at 77 K the sample belongs to the rhombohedral symmetry with the C^53v(R3m) space group (Z = 1). In our study, on heating, the 0.65PMN 0.35PT single crystal undergoes a rhombohedral → tetragonal → cubic phase transition sequence. The two phase transitions occur at 340 and 440 K, which correspond to the disappearance of the soft mode near 106 cm-1 recorded in VV polarization and the vanishing of the band around 780 cm^-1 in VH polarization, respectively.
文摘The Darhib mine is one of the several talc deposits in the Hamata area of southeastern Egypt. Several specimens of minerals coming from this mine were subjected to complementary investigation by micro-Raman spectrometry and scanning electron microscopy. The difficulty in their identification is the appearance of most of them: they are all very small and only visible under the mineral binocular microscope(×10 - ×40). They appear as small crystals in fissures and holes and a visual determination on colour and crystal gives only a guess of what kind of mineral it could be. Therefore, only after analyzing them by micro-Raman and scanning electron microscopy it was possible to identify their structure and they can be divided in three main groups: one is quite generic and several minerals of different species were identified, such as quartz, talc, mottramite and chrysocolla, very common in the talc mine (these ones are Si-based minerals);the other one is constituted by four samples which are Zn and/or Cu rich, which means minerals of the rosasite or aurichalcite groups;the last group is constituted by two samples containing mainly Pb..
文摘目的应用磁共振波谱(Magnetic Resonance Spectrum,MRS)及磁共振弥散张量成像(Diffusion Ten sor Imaging,DTI)检测代谢综合征(metabolic syndrome,MS)患者的脑内代谢物、脑部各向异性(fractional anisotro py,FA)值,早期发现亚临床脑细胞损害。方法选取病程5年以上、无神经系统损害临床表现的MS患者15例为患者组,及健康体检者17名为对照组,检查一般项目(身高、体重、血压、血糖、血脂、神经功能相关量表评分),并行头颅MRI、DWI、MRS和DTI检查,测定脑部背侧丘脑、扣带回后部、侧脑室后角NAA/Cr、Cho/Cr、NAA/Cho的比值及内囊后肢、放射冠区FA值,所测得结果在患者组和对照组,以及患者组中3项代谢异常者与对照组、患者组中2项代谢异常者与对照组间进行比较。结果患者组、患者组中3项代谢异常者、患者组中2项代谢异常者NAA/Cr、NAA/Cho在背侧丘脑、扣带回后部、侧脑室后角均低于对照组,差异有统计学意义(均P<0.05),Cho/Cr在扣带回后部、侧脑室后角高于对照组,差异有统计学意义(均P<0.05)。患者组双侧内囊后肢、右放射冠区FA值均低于对照组(均P﹤0.05);患者组3项代谢异常者双侧内囊后肢及右放射冠区较对照组降低(均P﹤0.05);患者组2项代谢异常者仅右侧放射冠区较对照组降低(P﹤0.05)。结论病程5年以上的MS患者在背侧丘脑、扣带回后部、侧脑室后角的脑细胞代谢及在内囊后肢、放射冠区的神经纤维微结构已有损害。
基金financial sup-port from SERB,DST for the funding provided through grant number SB/S3/ME/007/2014.
文摘This study emphasizes on the evaluation and comparison of the anticorrosive properties of sol-gel coatings with and without inhibitor loaded nanocontainers.In this case,naturally available clay nanotubes(halloysite)were loaded with cationic corrosion inhibitors Ce 3+/Zr 4+.These nanocontainers were dispersed in hybrid organic-inorganic sol-gel matrix sol.Coating was applied on magnesium alloy AZ91D using the sols containing modified and unmodified nanocontainers employing the dip coating method and cured at 130℃for 1 h in air.Corrosion resistance of coated/uncoated substrates were analyzed using electrochemical impedance spectroscopy,potentiodynamic polarization and weight loss measurements after exposure to 3.5 wt%NaCl solution for varying time durations between 24 h to 120 h.Self-healing ability of coatings was evaluated by micro-Raman spectroscopy after 120 h exposure to 3.5 wt%NaCl solution.Coatings generated after dispersion of corrosion inhibitor loaded clay in hybrid sol-gel matrix have shown more promising corrosion resistance when compared to just the sol-gel matrix coatings,after prolonged exposure to corrosive environment.
基金Supported by National Natural Science Foundation of China under Grant Nos 10072031, 10372049 and 10232030, the National Basic Research and Development Programme of China Grant No 2004CB619304, and the Central Laboratory of Strength and Vibration of Tsinghua University.
文摘We propose an experimental approach for investigation of the polycrystalline deformation behaviour at a grain scale. The technique is characterized by the joint application of micro material testing systems and the intragranular deformation analysis methods, It is attempting to map the deformation evolution at grain scale during the elastic and plastic deformations of polycrystalline specimens.
基金supported by the National Natural Science Foundation of China(91216301,11072033,11232008,and 11372037)the Program for New Century Excellent Talents in University(NCET-12-0036)the Natural Science Foundation of Beijing,China(3122027)
文摘Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs) under different cycles of thermal shock loading of 1 100℃ was investi- gated by the microscopic digital image correlation (DIC) and micro-Raman spec- troscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress under- goes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1 100℃, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO) layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.