To achieve the greatest leaching efficiency,water movement must occur under unsaturated flow conditions.Accordingly,the water application intensity of irrigation must be chosen carefully.The aim of this study was to e...To achieve the greatest leaching efficiency,water movement must occur under unsaturated flow conditions.Accordingly,the water application intensity of irrigation must be chosen carefully.The aim of this study was to evaluate the impact of the water application intensity of micro-sprinkler irrigation on coastal saline soil with different salt contents.To achieve this objective,a laboratory experiment was conducted with three soil salinity treatments(2.26,10.13,and 22.29 dS/m)and three water application intensity treatments(3.05,5.19,and 7.23 mm/h).The results showed that the effect of soil salinity on soil water content,electrical conductivity,and pH was significant,and the effect of the water application intensity was insignificant.High soil water content was present in the 40e60 cm profile in all soil salinity treatments,and the content was higher in the medium and high water application intensity treatments than in the low-intensity treatment.Significant salt leaching occurred in all treatments,and the effect was stronger in the high soil salinity treatment and medium water application intensity treatment.In the medium and high soil salinity treatments,pH exhibited a decreasing trend,with no trend change in the low soil salinity treatment,and the pH value was higher in the medium water application intensity treatment than in the other two treatments.These results indicated that the three intensities evaluated had no statistically different effect on the electrical conductivity of saturated soil-paste extracts(EC)in the upper 20 cm of the soil profile,and it would be better to maintain a lower value of the water application intensity.展开更多
This study aimed to investigate whether saline silt and sandy loam coastal soils could be reclaimed by micro-sprinkler irrigation.The experiments were run using moderately salt-tolerant tall fescue grass.Micro-sprinkl...This study aimed to investigate whether saline silt and sandy loam coastal soils could be reclaimed by micro-sprinkler irrigation.The experiments were run using moderately salt-tolerant tall fescue grass.Micro-sprinkler irrigation in three stages was used to regulate soil matric potential at a 20-cm soil depth.Continued regulation of soil water and salt through micro-sprinkler irrigation consistently resulted in an increasingly large low-salinity region.The application of the three stages of soil wateresalt regulation resulted in an absence of salt accumulation throughout the soil profile and the conversion of highly saline soils into moderately saline soils.There were increases in the plant height,leaf width,leaf length,and tiller numbers of tall fescue throughout the leaching process.The results showed that micro-sprinkler irrigation in three soil water and salt regulation stages can be used to successfully cultivate tall festuca in highly saline coastal soil.This approach achieved better effects in sandy loam soil than in silt soil.Tall fescue showed greater survival rates in sandy loam soil due to the rapid reclamation process,whereas plant growth was higher in silt soil because of effective water conservation.In sandy loam,soil moisture should be maintained during soil reclamation,and in silt soil,soil root-zone environments optimal for the emergence of plants should be quickly established.Micro-sprinkler irrigation can be successfully applied to the cultivation of tall fescue in coastal heavy saline soils under a three-stage soil wateresalt regulation regime.展开更多
Overhead aluminum sprinklers, which are used during the early stages of strawberry crop development to establish transplants and to leach out salts from the root zone, deliver significant volumes of water. Micro-sprin...Overhead aluminum sprinklers, which are used during the early stages of strawberry crop development to establish transplants and to leach out salts from the root zone, deliver significant volumes of water. Micro-sprinklers, which are typically used in orchard crops, were evaluated in a commercial strawberry field in California as an alternative to conventional aluminum sprinklers to conserve water without any negative impact on yields. In addition to the water consumption, data were collected from multiple plots within each treatment to determine the impact on plant growth, disease incidence, and seasonal yield. Micro-sprinklers used 32% less water than aluminum sprinklers during a three-week period without affecting fruit yield. They also appeared to lessen the severity of powdery mildew and botrytis fruit rot. This is the first study reporting the use of micro-sprinkler system, which can be a good alternative to the aluminum sprinklers to conserve irrigation water.展开更多
Available irrigation resources are becoming increasingly scarce in the North China Plain (NCP),and nitrogen-use efficiency of crop production is also relatively low.Thus,it is imperative to improve the water-use effic...Available irrigation resources are becoming increasingly scarce in the North China Plain (NCP),and nitrogen-use efficiency of crop production is also relatively low.Thus,it is imperative to improve the water-use efficiency (WUE) and nitrogen fertilizer productivity on the NCP.Here,we conducted a two-year field experiment to explore the effects of different irrigation amounts (S60,60 mm;S90,90 mm;S120,120 mm;S150,150 mm) and nitrogen application rates (150,195 and 240 kg ha^(–1);denoted as N1,N2 and N3,respectively) under micro-sprinkling with water and nitrogen combined on the grain yield(GY),yield components,leaf area index (LAI),flag leaf chlorophyll content,dry matter accumulation (DM),WUE,and nitrogen partial factor productivity (NPFP).The results indicated that the GY and NPFP increased significantly with increasing irrigation amount,but there was no significant difference between S120 and S150;WUE significantly increased first but then decreased with increasing irrigation and S120 achieved the highest WUE.The increase in nitrogen was beneficial to improving the GY and WUE in S60 and S90,while the excessive nitrogen application (N3) significantly reduced the GY and WUE in S120 and S150 compared with those in the N2 treatment.The NPFP significantly decreased with increasing nitrogen rate under the same irrigation treatments.The synchronous increase in spike number (SN) and 1 000-grain weight (TWG)was the main reason for the large increase in GY by micro-sprinkling with increasing irrigation,and the differences in SN and TGW between S120 and S150 were small.Under S60 and S90,the TGW increased with increasing nitrogen application,which enhanced the GY,while N2 achieved the highest TWG in S120 and S150.At the filling stage,the LAI increased with increasing irrigation,and greater amounts of irrigation significantly increased the chlorophyll content in the flag leaf,which was instrumental in increasing DM after anthesis and increasing the TGW.Micro-sprinkling with increased amounts of irrigation or excessive nitrogen application decreased the WUE mainly due to the increase in total water consumption (ET)and the small increase or decrease in GY.Moreover,the increase in irrigation increased the total nitrogen accumulation or contents (TNC) of plants at maturity and reduced the residual nitrate-nitrogen in the soil (SNC),which was conducive to the increase in NPFP,but there was no significant difference in TNC between S120 and S150.Under the same irrigation treatments,an increase in nitrogen application significantly increased the residual SNC and decreased the NPFP.Overall,micro-sprinkling with 120 mm of irrigation and a total nitrogen application of 195 kg ha^(–1) can lead to increases in GY,WUE and NPFP on the NCP.展开更多
The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving ...The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2016B14614)the Program of China Scholarship Council(Grant No.201906715015)+1 种基金the National Key Research and Development Program of China(Grant No.2017YFC040320502)a project funded by the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.
文摘To achieve the greatest leaching efficiency,water movement must occur under unsaturated flow conditions.Accordingly,the water application intensity of irrigation must be chosen carefully.The aim of this study was to evaluate the impact of the water application intensity of micro-sprinkler irrigation on coastal saline soil with different salt contents.To achieve this objective,a laboratory experiment was conducted with three soil salinity treatments(2.26,10.13,and 22.29 dS/m)and three water application intensity treatments(3.05,5.19,and 7.23 mm/h).The results showed that the effect of soil salinity on soil water content,electrical conductivity,and pH was significant,and the effect of the water application intensity was insignificant.High soil water content was present in the 40e60 cm profile in all soil salinity treatments,and the content was higher in the medium and high water application intensity treatments than in the low-intensity treatment.Significant salt leaching occurred in all treatments,and the effect was stronger in the high soil salinity treatment and medium water application intensity treatment.In the medium and high soil salinity treatments,pH exhibited a decreasing trend,with no trend change in the low soil salinity treatment,and the pH value was higher in the medium water application intensity treatment than in the other two treatments.These results indicated that the three intensities evaluated had no statistically different effect on the electrical conductivity of saturated soil-paste extracts(EC)in the upper 20 cm of the soil profile,and it would be better to maintain a lower value of the water application intensity.
基金supported by the China Scholarship Council(Grant No.201906715015)the Priority Academic Development Program of Jiangsu Higher Education Institutions.
文摘This study aimed to investigate whether saline silt and sandy loam coastal soils could be reclaimed by micro-sprinkler irrigation.The experiments were run using moderately salt-tolerant tall fescue grass.Micro-sprinkler irrigation in three stages was used to regulate soil matric potential at a 20-cm soil depth.Continued regulation of soil water and salt through micro-sprinkler irrigation consistently resulted in an increasingly large low-salinity region.The application of the three stages of soil wateresalt regulation resulted in an absence of salt accumulation throughout the soil profile and the conversion of highly saline soils into moderately saline soils.There were increases in the plant height,leaf width,leaf length,and tiller numbers of tall fescue throughout the leaching process.The results showed that micro-sprinkler irrigation in three soil water and salt regulation stages can be used to successfully cultivate tall festuca in highly saline coastal soil.This approach achieved better effects in sandy loam soil than in silt soil.Tall fescue showed greater survival rates in sandy loam soil due to the rapid reclamation process,whereas plant growth was higher in silt soil because of effective water conservation.In sandy loam,soil moisture should be maintained during soil reclamation,and in silt soil,soil root-zone environments optimal for the emergence of plants should be quickly established.Micro-sprinkler irrigation can be successfully applied to the cultivation of tall fescue in coastal heavy saline soils under a three-stage soil wateresalt regulation regime.
文摘Overhead aluminum sprinklers, which are used during the early stages of strawberry crop development to establish transplants and to leach out salts from the root zone, deliver significant volumes of water. Micro-sprinklers, which are typically used in orchard crops, were evaluated in a commercial strawberry field in California as an alternative to conventional aluminum sprinklers to conserve water without any negative impact on yields. In addition to the water consumption, data were collected from multiple plots within each treatment to determine the impact on plant growth, disease incidence, and seasonal yield. Micro-sprinklers used 32% less water than aluminum sprinklers during a three-week period without affecting fruit yield. They also appeared to lessen the severity of powdery mildew and botrytis fruit rot. This is the first study reporting the use of micro-sprinkler system, which can be a good alternative to the aluminum sprinklers to conserve irrigation water.
基金funded by the National Key Research and Development Program of China(2016YFD0300105 and 2016YFD0300401)the National Natural Science Foundation of China(31871563)the earmarked fund for China Agriculture Research System(CARS-3)。
文摘Available irrigation resources are becoming increasingly scarce in the North China Plain (NCP),and nitrogen-use efficiency of crop production is also relatively low.Thus,it is imperative to improve the water-use efficiency (WUE) and nitrogen fertilizer productivity on the NCP.Here,we conducted a two-year field experiment to explore the effects of different irrigation amounts (S60,60 mm;S90,90 mm;S120,120 mm;S150,150 mm) and nitrogen application rates (150,195 and 240 kg ha^(–1);denoted as N1,N2 and N3,respectively) under micro-sprinkling with water and nitrogen combined on the grain yield(GY),yield components,leaf area index (LAI),flag leaf chlorophyll content,dry matter accumulation (DM),WUE,and nitrogen partial factor productivity (NPFP).The results indicated that the GY and NPFP increased significantly with increasing irrigation amount,but there was no significant difference between S120 and S150;WUE significantly increased first but then decreased with increasing irrigation and S120 achieved the highest WUE.The increase in nitrogen was beneficial to improving the GY and WUE in S60 and S90,while the excessive nitrogen application (N3) significantly reduced the GY and WUE in S120 and S150 compared with those in the N2 treatment.The NPFP significantly decreased with increasing nitrogen rate under the same irrigation treatments.The synchronous increase in spike number (SN) and 1 000-grain weight (TWG)was the main reason for the large increase in GY by micro-sprinkling with increasing irrigation,and the differences in SN and TGW between S120 and S150 were small.Under S60 and S90,the TGW increased with increasing nitrogen application,which enhanced the GY,while N2 achieved the highest TWG in S120 and S150.At the filling stage,the LAI increased with increasing irrigation,and greater amounts of irrigation significantly increased the chlorophyll content in the flag leaf,which was instrumental in increasing DM after anthesis and increasing the TGW.Micro-sprinkling with increased amounts of irrigation or excessive nitrogen application decreased the WUE mainly due to the increase in total water consumption (ET)and the small increase or decrease in GY.Moreover,the increase in irrigation increased the total nitrogen accumulation or contents (TNC) of plants at maturity and reduced the residual nitrate-nitrogen in the soil (SNC),which was conducive to the increase in NPFP,but there was no significant difference in TNC between S120 and S150.Under the same irrigation treatments,an increase in nitrogen application significantly increased the residual SNC and decreased the NPFP.Overall,micro-sprinkling with 120 mm of irrigation and a total nitrogen application of 195 kg ha^(–1) can lead to increases in GY,WUE and NPFP on the NCP.
基金the National Key Research and Development Program of China(2017YFD0300203 and 2016YFD0300105)。
文摘The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.