期刊文献+
共找到660篇文章
< 1 2 33 >
每页显示 20 50 100
EFFECT OF SUBSTRUCTURE AND RESIDUAL STRESS IN STRENGTHENED LAYER ON FATIGUE STRENGTH OF STAINLESS OR LOW CARBON STEEL 被引量:2
1
作者 TAN Yuxu REN Liping LI Gang Xi’an Jiaotong University,Xi’an,China TAN Yuxu Associate Professor,Institute of Metallic Materials and Strength,Xi’an Jiaotong University,Xi’an 710048,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第2期132-137,共6页
In the strengthened layer of stainless steel after shot peening,there are a great amount of deformation microtwins which may act as structural strengthening factor and prevent the gradual relaxation of surface residua... In the strengthened layer of stainless steel after shot peening,there are a great amount of deformation microtwins which may act as structural strengthening factor and prevent the gradual relaxation of surface residual stress during fatigue,so as to keep its rather high level of bending fatigue strength.However,in the strengthened surface layer of low carbon steel, dislocation cell structure is so unstalbe during fatigue that its surface residual stress relaxation cannot be retarded.Therefore,the bending fatigue strength of the low carbon steel can not be improred by shot peening. 展开更多
关键词 SUBSTRUCTURE residual stress fatigue strength
下载PDF
A Simplified Model for the Effect of Weld-Induced Residual Stresses on the Axial Ultimate Strength of Stiffened Plates 被引量:3
2
作者 Bai-Qiao Chen C.Guedes Soares 《Journal of Marine Science and Application》 CSCD 2018年第1期57-67,共11页
The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression,in which the residual stresses in the welded plates are calculated ... The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression,in which the residual stresses in the welded plates are calculated by a thermo-elasto-plastic finite element analysis that is used to fit an idealized model of residual stress distribution.The numerical results of ultimate strength based on the simplified model of residual stress show good agreement with those of various methods including the International Association of Classification Societies(IACS)Common Structural Rules(CSR),leading to the conclusion that the simplified model can be effectively used to represent the distribution of residual stresses in steel-plated structures in a wide range of engineering applications.It is concluded that the widths of the tension zones in the welded plates have a quasi-linear behavior with respect to the plate slenderness.The effect of residual stress on the axial strength of the stiffened plate is analyzed and discussed. 展开更多
关键词 Fillet weld Finite element analysis residual stress Ultimate strength
下载PDF
Numerical simulation of residual stress and deformation for submerged arc welding of Q690D high strength low alloy steel thick plate 被引量:6
3
作者 朱梓坤 韩阳 +2 位作者 张舟 张义 周龙早 《China Welding》 CAS 2021年第3期49-58,共10页
The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under differen... The finite element simulation software SYSWELD is used to numerically simulate the temperature field,residual stress field,and welding deformation of Q690D thick plate multi-layer and multi-pass welding under different welding heat input and groove angles.The simulation results show that as the welding heat input increases,the peak temperature during the welding process is higher,and the residual stress increases,they are all between 330–340 MPa,and the residual stress is concentrated in the area near the weld.The hole-drilling method is used to measure the actual welding residual stress,and the measured data is in good agreement with the simulated value.The type of post-welding deformation is angular deformation,and as the welding heat input increases,the maximum deformation also increases.It shows smaller residual stress and deformation when the groove angle is 40°under the same heat input.In engineering applications,under the premise of guaranteeing welding quality,smaller heat input and 40°groove angle should be used. 展开更多
关键词 numerical simulation multi-layer and multi-pass welding Q690D high strength low alloy steel welding residual stress and deformation
下载PDF
Relief of Residual Stresses in 800 MPa Grade High Strength Steel Weldments by Explosion Treatment and its Effect on Mechanical Properties 被引量:1
4
作者 Changzhong WU Huaining CHEN Jing CHEN Quanhong LIN Jianjun GUAN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第3期387-391,共5页
The explosion treatment technique has been used in the relief of residual stresses in 800 MPa grade high strength steel manual welded joints. The residual stresses on surface and through thickness of the weldment were... The explosion treatment technique has been used in the relief of residual stresses in 800 MPa grade high strength steel manual welded joints. The residual stresses on surface and through thickness of the weldment were measured for both as-welded and explosion-treated sample, the mechanical properties of welded joints under different conditions were also tested. The effect of explosion treatment on the fracture toughness of materials with a residual defect was investigated by crack opening displacement (COD) test. The results show that explosion treatment can reduce not only the surface residual stress but also the residual stress through thickness in the welded joints. The effect of explosion treatment on the mechanical properties and a residual defect in welded joint were inconspicuous. 展开更多
关键词 High strength steel Explosion treatment residual stress Mechanical properties COD test
下载PDF
An Application of the Modified Shear Lag Model to Study the Influence of Thermal Residual Stresses on the Stiffness and Yield Strength of Short Fiber Reinforced Metal Matrix Composites 被引量:1
5
作者 Zhonghao JIANG and Jianshe LIAN(Dept. of Materials Science and Engineering, Jilin University of Technology, Changchun 130025, China)Shangli DONG and Dezhuang YANG(School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第3期213-221,共9页
The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and ... The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions 展开更多
关键词 ab Figure An Application of the Modified Shear Lag Model to Study the Influence of Thermal residual stresses on the Stiffness and Yield strength of Short Fiber Reinforced Metal Matrix Composites
下载PDF
Influence of pre- plastic deformation on thermal residual stress and yield strength of SiC_w/Al composites 被引量:1
6
作者 姜传海 王德尊 姚忠凯 《中国有色金属学会会刊:英文版》 CSCD 2000年第3期393-396,共4页
With a micro mechanical model, the feasibility of modification of thermal residual stress of the composites treated by tensile pre plastic deformation was analyzed. The relationship between pre plastic strain and vari... With a micro mechanical model, the feasibility of modification of thermal residual stress of the composites treated by tensile pre plastic deformation was analyzed. The relationship between pre plastic strain and variation of thermal residual stress was established. By using the method of tensile pre plastic deformation, the thermal residual stress in 20%SiC w/6061Al composites was modified. The results show that, with increasing tensile pre plastic strain, the tensile residual stress in the matrix was decreased to zero gradually, and then it was turned into compressive stress. By comparison, it was found that the changing tendency of the test results is similar to that of theoretical analysis. In addition, due to pre plastic deformation, the dislocation density in the matrix was increased, and the yield strength of the composites was improved. The increasing yield strength is mainly due to the decreasing tensile residual stress and the changing of distribution of dislocation in the matrix. 展开更多
关键词 SIC w/Al PRE plastic deformation residual stress YIELD strength
下载PDF
Effects of residual stress and dislocation on tensile deformation behavior of SiC_w/Al composites
7
作者 胡 明 胡 津 +1 位作者 费维栋 姚忠凯 《中国有色金属学报》 EI CAS CSCD 北大核心 2001年第z1期125-128,共4页
By means of XRD, Instron electronic tensile machine and TEM, the dislocation states and strengthening mechanisms of SiC whisker reinforced pure aluminum matrix composites were studied with different annealing treatmen... By means of XRD, Instron electronic tensile machine and TEM, the dislocation states and strengthening mechanisms of SiC whisker reinforced pure aluminum matrix composites were studied with different annealing treatment processes and matrixes. The results showed that the strengthening mechanisms of SiC w/p Al composite and SiC w/6061Al composites are different. For the SiC w/p Al composite, the thermal residual stress plays more important role in strengthening than the high density dislocations in matrix; for the SiC w/6061Al composite, the dislocation strengthening and precipitation are main strengthening factors. 展开更多
关键词 SiC whisker yield strength DISLOCATION thermal residual stress
下载PDF
Strength Model of Soda Residue Soil Considering Consolidation Stress and Structural Influence
8
作者 GONG Xiaolong WANG Yuanzhan CHEN Tong 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1216-1226,共11页
Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and s... Soda residue(SR)is a type of industrial waste produced in the soda process with the ammonia-soda method.Applying SR to backfilling solves the land occupation and environmental pollution problems in coastal areas and saves material costs for foundation engineering.The strength characteristics of soda residue soil(SRS)under different consolidation conditions are the key points to be solved in the engineering application of SRS.Triaxial compression tests were performed on the undisturbed SRS of Tianjin Port.The shear properties of SRS under different consolidation conditions were then discussed.Meanwhile,a structural strength model(SSM)based on Mohr-Coulomb theory was proposed.SSM reflects the influence of soil structure on undrained strength(Cu)and divides the Cu into the following two parts:friction strength(C_(uf))and original structural strength(C_(u0)).C_(uf)characterizes the magnitude of friction between soil particles,which is related to the consolidation stress.Meanwhile,C_(u0)represents the structural effect on soil strength,which is related to the soil deposition and consolidation processes.SSM was validated by the test data of undisturbed soils.Results reveal that the undisturbed soil generally had a certain C_(u0).Therefore,the SRS strength model was established by combining the experimental law of SRS with SSM.Error analysis shows that the SRS strength model can effectively predict the Cu of undisturbed SRS in Tianjin Port under different consolidation conditions. 展开更多
关键词 soda residue soil triaxial test strength model soil structure consolidation stress
下载PDF
Numerical Analysis of Residual Strength in the Perforated Casing of Ultra Deep Wells
9
作者 Yanxian Wu Shouming Zhong +7 位作者 Zhigang Guan Lin Song Kun Li Jiarui Sun Yuqiang Xu Maochuan Tu Chaobin Fan Jinbin Yang 《Fluid Dynamics & Materials Processing》 EI 2023年第1期261-271,共11页
A three-dimensional model for the numerical simulation of casing-cement behavior is used to investigate residual strength in the perforated casing of ultra deep wells.The influence of the hole diameter,hole density an... A three-dimensional model for the numerical simulation of casing-cement behavior is used to investigate residual strength in the perforated casing of ultra deep wells.The influence of the hole diameter,hole density and phase angle on the residual strength of the casing under non-uniform stress and fracturing conditions is revealed through the consideration of different perforation parameters.It is shown that the residual strength of the casing increases with the hole diameter and periodically changes with the hole density;the phase angle is the main factor that affects the residual strength of the perforated casing,and the perforation should be avoided in the direction of the minimum principal stress to reduce stress concentration at the perforation hole.Moreover,as shown by a companion orthogonal experiment,the descending order of influence of the different influential parameters is:phase angle,hole diameter,hole density and the thickness of casing. 展开更多
关键词 Perforated casing non-uniform stress residual strength orthogonal experiment
下载PDF
A Model for the Determination of Semi-Circular Spot Corrosion Damage and Residual Strength in Oil Pipes
10
作者 Hongtao Liu Maoxian Xiong +5 位作者 Bo Zhang Junfeng Xie Jinrui Deng MifengZhao Ruijing Jiang Yushan Zheng 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1709-1720,共12页
Pitting corrosion often occurs due to the presence of various corrosive substances,such as CO_(2) and H_(2)S,in the pipe service environment.As a result of this process,the residual strength of oil pipes is reduced an... Pitting corrosion often occurs due to the presence of various corrosive substances,such as CO_(2) and H_(2)S,in the pipe service environment.As a result of this process,the residual strength of oil pipes is reduced and this can compromise the integrity of the entire pipe string.In the present work,a model is introduced on the basis of the API579 standard to determine the so-called stress concentration coefficient.The model accounts for pitting corrosion shapes such as shallow semi-circles,semi-circles,and deep semi-circles.The relationship between the corrosion pit depth and opening diameter and the residual strength of the oil casing is obtained.The results show that the influence of the pit opening diameter on the stress concentration coefficient is smaller than that of the pit depth.For a constant pit opening diameter,the coefficient increases gradually with increasing the pit depth.The compressive strength and internal pressure strength of the carbon steel oil casing decrease accordingly.When the depth of the corrosion pit is relatively small,the growth of the coefficient is slower;when the depth of the corrosion pit increases to a certain value,the increase in stress concentration coefficient becomes obvious. 展开更多
关键词 Pitting corrosion residual strength stress concentration coefficient
下载PDF
Influences of Y_2O_3 dopant content on residual stress,structure,and optical properties of ZrO_2 thin films 被引量:3
11
作者 肖祁陵 邵淑英 +1 位作者 邵建达 范正修 《Chinese Optics Letters》 SCIE EI CAS CSCD 2009年第2期162-164,共3页
Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 contents (from 0 to 12 mol%) are deposited on BK7 glass substrates by electron-beam evaporation method. The effects of different Y2O3 dopant ... Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 contents (from 0 to 12 mol%) are deposited on BK7 glass substrates by electron-beam evaporation method. The effects of different Y2O3 dopant contents on residual stress, structure, and optical properties of ZrO2 thin films are investigated. The results show that residual stress in YSZ thin films varies from tensile to compressive with the increase of Y2O3 molar content. The addition of Y2O3 is beneficial to the crystallization of YSZ thin film and transformation from amorphous to high temperature phase, and the refractive index decreases with the increase of Y2O3 molar content. Moreover, the variations of residual stress and the shifts of refractive index correspond to the evolution of structures induced by the addition of Y2O3. 展开更多
关键词 Light refraction Refractive index REFRACTOMETERS residual stresses strength of materials Thin films Zirconium alloys
原文传递
Evolution of microstructure and properties of a novel Ni-based superalloy during stress relief annealing
12
作者 Lei Jia Heng Cui +3 位作者 Shufeng Yang Shaomin Lü Xingfei Xie Jinglong Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1876-1889,共14页
We discussed the decrease in residual stress,precipitation evolution,and mechanical properties of GH4151 alloy in different annealing temperatures,which were studied by the scanning electron microscope(SEM),high-resol... We discussed the decrease in residual stress,precipitation evolution,and mechanical properties of GH4151 alloy in different annealing temperatures,which were studied by the scanning electron microscope(SEM),high-resolution transmission electron microscopy(HRTEM),and electron backscatter diffraction(EBSD).The findings reveal that annealing processing has a significant impact on diminishing residual stresses.As the annealing temperature rose from 950 to 1150℃,the majority of the residual stresses were relieved from 60.1 MPa down to 10.9 MPa.Moreover,the stress relaxation mechanism transitioned from being mainly controlled by dislocation slip to a combination of dislocation slip and grain boundary migration.Meanwhile,the annealing treatment promotes the decomposition of the Laves,accompanied by the precipitation ofμ-(Mo_(6)Co_(7))starting at 950℃ and reaching a maximum value at 1050℃.The tensile strength and plasticity of the annealing alloy at 1150℃ reached the maximum(1394 MPa,56.1%)which was 131%,200%fold than those of the as-cast alloy(1060 MPa,26.6%),but the oxidation process in the alloy was accelerated at 1150℃.The enhancement in durability and flexibility is primarily due to the dissolution of the brittle phase,along with the shape and dispersal of theγ′phase. 展开更多
关键词 GH4151 alloy annealing treatment residual stress precipitation evolution strength mechanical properties
下载PDF
Effect of thermal annealing on the microstructure, mechanical properties and residual stress relaxation of pure titanium after deep rolling treatment 被引量:6
13
作者 Jie Huang Kai-Ming Zhang +4 位作者 Yun-Fei Jia Cheng-Cheng Zhang Xian-Cheng Zhang Xian-Feng Ma Shan-Tung Tu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第3期409-417,共9页
The aim of this paper was to investigate the effect of thermal annealing on the microstructure, mechanical properties, and residual stress relaxation of deep rolled pure titanium. The microstructure and mechanical pro... The aim of this paper was to investigate the effect of thermal annealing on the microstructure, mechanical properties, and residual stress relaxation of deep rolled pure titanium. The microstructure and mechanical properties of the surface modified layer were analyzed by metallographic microscopy, transmission electron microscope and in-situ tensile testing. The results showed that the annealed near-surface layer with fine recrystallized grains had increased ductility but decreased strength after annealing below the recrystallization temperature, where the tensile strength was still higher than that of the substrate. After annealing at the recrystallization temperature, the recrystallized near-surface layer had smaller grain size,similar tensile strength, and higher proportional limit, comparable to those of the substrate. Moreover, the residual stress relaxation showed evidently different mechanisms at three different temperature regions:low temperature(T≤ 0.2 Tm), medium temperature(T≈(0.2–0.3) Tm), and high temperature(T≥ 0.3 Tm).Furthermore, a prediction model was proposed in terms of modification of Zener-Wert-Avrami model,which showed promise in characterizing the residual stress relaxation in commercial pure Ti during deep rolling at elevated temperature. 展开更多
关键词 Deep ROLLING Ultra-fine GRAIN TENSILE strength MICROSTRUCTURE residual stress
原文传递
Crack patterns corresponding to the residual strength plateau of ceramics subjected to thermal shock
14
作者 H.-L.Hou X.-E Wu +3 位作者 P.Yan F.Song J.Li C.-P.Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期670-674,共5页
The formation strength plateau of ceramics is addressed. A set of of 99A1203 are conducted, mechanism of the residual subjected to thermal shock thermal shock experiments where the thin specimens of 1 mm× 10 mm&... The formation strength plateau of ceramics is addressed. A set of of 99A1203 are conducted, mechanism of the residual subjected to thermal shock thermal shock experiments where the thin specimens of 1 mm× 10 mm×50 mm exhibit parallel through edge cracks, and thus permit quantitative measurements of the crack patterns. The cracks evolve with the severity of ther- mal shock. It is found that there is a correlation between the length and density of the thermal shock cracks. The increase of crack length weakens the residual strength, whereas the increase of crack density improves it. In a considerably wide temperature range, the two contrary effects just counteract each other; consequently a plateau appears in the variation curve of the residual strength. A comparison between the numerical and experimental results of the residual strength is made, and they are found in good agreement. This work is helpful to a deep understanding of the thermal shock failure of ceramics. 展开更多
关键词 Ceramics Thermal shock Crack patterns residual strength - stress intensity factor
下载PDF
Undrained vane shear strength of sand-foam mixtures subjected to different shear rates 被引量:2
15
作者 Jiazheng Zhong Shuying Wang Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1591-1602,共12页
The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conv... The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conveyor with varied rotation speeds during tunneling,it is non-trivial to investigate the effect of shear rates on the undrained shear strength of sand-foam mixtures under chamber pressures to extend the understanding on the tunneling process.This study conducted a series of pressurized vane shear tests to investigate the role of shear rates on the peak and residual strengths of sand-foam mixtures at different pore states.Different from the shear-rate characteristics of natural sands or clay,the results showed that the peak strength of sand-foam mixtures under high vertical total stress(σ_(v)≥200 kPa)and low foam injection ratio(FIR30%)decreased with the increase in shear rate.Otherwise,the peak strength was not measurably affected by shear rates.The sand-foam mixtures in the residual state resembled low-viscous fluid with yield stress and the residual strength increased slightly with shear rates.In addition,the peak and residual strengths were approximately linear with vertical effective stress regardless of the total stress and FIR.The peak effective internal friction angle remained almost invariant in a low shear rate(γ′<0.25 s1)but decreased when the shear rate continued increasing.The residual effective internal friction angle was lower than the peak counterpart and insensitive to shear rates.This study unveiled the role of shear rates in the undrained shear strength of sand-foam mixtures with various FIRs and vertical total stresses.The findings can extend the understanding of the rate-dependent shear characteristics of conditioned soils and guide the decision-making of soil conditioning schemes in the EPB shield tunneling practice. 展开更多
关键词 Sand-foam mixture Shear rate Peak and residual strengths Effective stress Effective internal friction angle
下载PDF
复合磨损套管爆裂失效机理及剩余强度预测
16
作者 邓宽海 张明 +3 位作者 彭阳 周念涛 姚明远 林元华 《天然气工业》 EI CAS CSCD 北大核心 2024年第3期172-183,共12页
超深井、水平井、大位移井等复杂油气井服役工况异常恶劣,套管复合磨损严重,将对井筒完整性构成巨大威胁,且磨损套管剩余强度难以精准预测。为此,基于塔里木盆地塔中北坡顺南区块501井套管磨损数据及P110管材应力—应变本构关系,建立了... 超深井、水平井、大位移井等复杂油气井服役工况异常恶劣,套管复合磨损严重,将对井筒完整性构成巨大威胁,且磨损套管剩余强度难以精准预测。为此,基于塔里木盆地塔中北坡顺南区块501井套管磨损数据及P110管材应力—应变本构关系,建立了充分考虑钻杆本体和接头联合造成的磨损模式、夹角、磨损重叠深度及磨损深度的复合磨损套管有限元力学模型,并开展了多种复合磨损模式下套管弹塑性变形、屈服、裂纹萌生、扩展及爆裂行为模拟,得到了不同复合磨损套管应力分布、剩余抗内压屈服强度及爆裂强度。研究结果表明:(1)月牙夹角在0°~90°时,应力干涉削弱应力集中,月牙夹角在90°~180°时,应力干涉增强应力集中,这种交互作用机制导致磨损套管剩余强度随着月牙夹角增加而先增加后降低;(2)裂纹萌生并起始于等效应力最大的位置即磨损月牙中心,并垂直于最大环向应力沿径向从套管内壁向外壁扩展,且裂纹一旦萌生,裂纹将迅速扩展并发生爆裂失效;(3)灰色关联度分析确定了复合磨损套管剩余强度对磨损深度、月牙夹角、复合磨损形式、月牙重叠深度的敏感性,分析结果表明磨损深度是决定套管剩余强度的主控因素。结论认为,该认识为套管强度设计与优化提供了技术参考,并对准确预测复合磨损套管剩余强度和确保井筒安全及完整性具有重要意义。 展开更多
关键词 油气井 复合磨损 套管 失效机理 应力干涉 应力集中 应力交互 剩余强度
下载PDF
起重船用高强钢大厚板焊接残余应力的试验研究
17
作者 王信 刘勇 王斌 《宇航材料工艺》 CAS CSCD 北大核心 2024年第3期98-102,共5页
以某型起重船结构为研究对象,采用焊接后热作为焊接残余应力消除措施,研究结构的残余应力情况及消除措施的有效性。首先采用焊态和经过焊接后热的两组试板进行焊接残余应力检测并对比,结果表明焊态的试板焊接纵向残余应力最高达552.5 M... 以某型起重船结构为研究对象,采用焊接后热作为焊接残余应力消除措施,研究结构的残余应力情况及消除措施的有效性。首先采用焊态和经过焊接后热的两组试板进行焊接残余应力检测并对比,结果表明焊态的试板焊接纵向残余应力最高达552.5 MPa,接近材料的屈服强度;经后热的试板纵向残余应力最大为385.3MPa,与焊态相比降低了167.2 MPa,下降约30%;同时获取了残余应力分布情况。进一步对起重船导向基座结构的焊缝进行后热并进行应力检测,其纵向焊接残余应力最大值为310.8 MPa,远低于母材屈服强度。本文研究表明:起重船高强钢大厚板在焊态时焊接残余应力较大,需采取措施消除残余应力;采用焊接后热可以大幅降低高强钢大厚板的焊接残余应力水平,焊接后热具有较好的经济性和操作便捷性,在起重船建造过程中建议考虑对大厚板焊缝进行后热以消除焊接残余应力消除。 展开更多
关键词 起重船 高强钢 焊接残余应力 后热
下载PDF
CT70低合金高强度油管用钢激光焊接接头残余应力有限元模拟
18
作者 张阿昱 王建 +2 位作者 张亚刚 毕宗岳 余晗 《焊管》 2024年第6期28-33,共6页
针对CT70级连续管用钢激光焊焊接接头,考虑试板、焊缝、热源的轴对称性,应用有限元软件建立了1/2轴对称有限元分析模型,对激光焊接接头的温度场、变形场与应力场进行了模拟分析。结果表明,有限元模拟焊缝尺寸与实际基本一致;残余应力主... 针对CT70级连续管用钢激光焊焊接接头,考虑试板、焊缝、热源的轴对称性,应用有限元软件建立了1/2轴对称有限元分析模型,对激光焊接接头的温度场、变形场与应力场进行了模拟分析。结果表明,有限元模拟焊缝尺寸与实际基本一致;残余应力主要集中在焊缝周围,在远离焊缝区域残余应力逐渐减小,且焊缝中心为拉应力;变形在焊缝周围最大,距离焊缝越远变形越小。将有限元模拟结果与实际测试结果对比,激光焊焊缝中心为拉应力,与有限元计算结果相同。 展开更多
关键词 低合金高强度油管 激光焊 焊接接头 残余应力
下载PDF
残余应力分布对基板玻璃落球冲击强度影响的数值模拟研究
19
作者 朱经纬 舒众众 +5 位作者 金良茂 曹志强 张冲 郑际杰 刘涌 韩高荣 《硅酸盐通报》 CAS 北大核心 2024年第4期1267-1273,1291,共8页
落球冲击强度是电子基板玻璃力学性能的重要指标,而残余应力对基板玻璃落球冲击强度有极大的影响。本文结合真实落球冲击试验,使用有限元方法对电子基板玻璃在不同残余应力分布模式下的落球冲击强度进行了数值模拟计算。结果表明,有限... 落球冲击强度是电子基板玻璃力学性能的重要指标,而残余应力对基板玻璃落球冲击强度有极大的影响。本文结合真实落球冲击试验,使用有限元方法对电子基板玻璃在不同残余应力分布模式下的落球冲击强度进行了数值模拟计算。结果表明,有限元数值模拟能够准确地反映落球冲击试验中的真实响应和基板玻璃破碎形貌。数值模拟中电子基板玻璃的落球冲击强度(通过残余质量率表征)和受冲击区域的残余张应力之间存在非线性关系,当残余张应力数值超过阈值时,落球冲击强度迅速下降。冲击区域存在的残余张应力对落球冲击产生的应力具有明显的放大作用,仅1.0 MPa的残余张应力就能使冲击产生的应力较无残余应力时提高约10 MPa,这是造成电子基板玻璃落球冲击强度下降的重要原因。 展开更多
关键词 电子基板玻璃 落球冲击强度 残余应力 数值模拟 落球冲击试验
下载PDF
New Developed Welding Electrode for Improving the Fatigue Strength of Welded Joints 被引量:3
20
作者 Wenxian WANG, Lixing HUO, Yufeng ZHANG, Dongpo WANG and Hongyang JINGCollege of Material Science and Engineering, Tianjin University, Tianjin 300072, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第6期527-531,共5页
A new welding electrode, low transformation temperature electrode (LTTE), was introduced in this paper. It was described in design principle, mechanics, chemical compositions of their deposited metal and manufacturing... A new welding electrode, low transformation temperature electrode (LTTE), was introduced in this paper. It was described in design principle, mechanics, chemical compositions of their deposited metal and manufacturing methods. It was proved that the best transformation starting temperature from austenite to martensite of the deposited metal of LTTE was at about 191℃ and it was obtained by adding alloying elements such as Cr, Ni, Mn and Mo. The microstructure of the weld metal of the LTTE was low carbon martensite and residual austenite. The compressive residual stress was induced around the weld of the LTTE and the -145 MPa in compression could be obtained in middle of weld metal. The fatigue tests showed that the fatigue strength of the longitudinal welded joints welded with the LTTE at 2×106 cycles was improved by 59% compared with that of the same type of welded joints welded with conventional E5015 and the fatigue life was increased by 47 times at 162 MPa. It is a very valuable method to improve the fatigue performance of welded joints. 展开更多
关键词 Low transformation temperature electrode Compressive residual stress Fatigue strength Welded joints
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部