AIM: This study aimed to expound the individual idea of micro-invasive surgery from pre-operative preparation, intra-operative processing and post-operative management. METHODS: Pre-operative preparation was improve...AIM: This study aimed to expound the individual idea of micro-invasive surgery from pre-operative preparation, intra-operative processing and post-operative management. METHODS: Pre-operative preparation was improved by analyzing pathological factors and hematoma property, and considering patients' age, basic disease, blood pressure control, with persistent haemorrhagia/rehaemorrhagia or not, operative occasion choice, positioning and other procedures. In the surgery, positioner was used. Initial aspiration volume was cautiously controlled. After operation, vital signs of patients were kept stable by cautiously using hematoma liquefacient and combining with free radical scavenger. RESULTS: The core content of individual micro-invasive surgery was mainly to relieve intracranial pressure. Under the condition of sufficient pre-operative preparation known by patients' family members, precise positioning was determined and individual therapeutic regimen was made. Meanwhile, caution should be taken in hematoma aspiration. Liquefaction and drainage should be paid more attention, and complications were processed actively. CONCLUSION: During the process of micro-invasive evacuation of intracranial hematoma for treating cerebral hemorrhage, attention should be paid to analyzing cerebral hematoma etiology and pathophysiological mechanism, and individual idea should be considered in surgical treatment aiming at patients' concrete disease condition.展开更多
Objective The cardiac synchronization therapy (CRT) was proven to have good treatment for the cardiacconduction disorders patients with serious heart failure. But many disadvantages were gradually be noticed,such as d...Objective The cardiac synchronization therapy (CRT) was proven to have good treatment for the cardiacconduction disorders patients with serious heart failure. But many disadvantages were gradually be noticed,such as difficulty of sinus electrode implantation,coronary sinus injury and bleeding,still one third展开更多
Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.Howeve...Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.However,due to the inaccurate voice activity detection(VAD),the residual music noise and enhanced performance still need to be further improved,especially in the low signal to noise ratio(SNR)scenarios.To address this issue,an improved frame iterative spectral subtraction in the STM domain(IMModSSub)is proposed.More specifically,with the inter-frame correlation,the noise subtraction is directly applied to handle the noisy signal for each frame in the STM domain.Then,the noisy signal is classified into speech or silence frames based on a predefined threshold of segmented SNR.With these classification results,a corresponding mask function is developed for noisy speech after noise subtraction.Finally,exploiting the increased sparsity of speech signal in the modulation domain,the orthogonal matching pursuit(OMP)technique is employed to the speech frames for improving the speech quality and intelligibility.The effectiveness of the proposed method is evaluated with three types of noise,including white noise,pink noise,and hfchannel noise.The obtained results show that the proposed method outperforms some established baselines at lower SNRs(-5 to +5 dB).展开更多
A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm wa...A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm was coupled with a surrogate model to optimize the geometry of the single-channel pump volute. Steady and unsteady Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized using finite volume approximations and were then solved on tetrahedral grids to analyze the flow in the single-channel pump. The three objective functions represented the total efficiency, the sweep area of the radial force during one revolution, and the distance of the mass center of sweep area from the origin while the two design variables were related to the cross-sectional area of the internal flow of the volute. Latin hypercube sampling was employed to generate twelve design points within the design space, and response surface approximation models were constructed as surrogate models for the objectives based on the values of the objective function at the given design points. A fast non-dominated sorting genetic algorithm for local search was coupled with the surrogate models to determine the global Pareto-optimal solutions. The trade-off between the objectives was determined and was described in terms of the Pareto-optimal solutions. The results of the multi-objective optimization showed that the optimum design simultaneously improved the efficiency and reduced the radial force relative to those of the reference design.展开更多
This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhanc...This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhancement of single-channel speech. In this work, the whole speech spectrum is divided into different non-uniformly spaced frequency bands in accordance with the critical-band rate scale of the psycho-acoustic model and the spectral over-subtraction is carried-out separately in each band. In addition, for the estimation of the noise from each band, the adaptive noise estimation approach is used and does not require explicit speech silence detection. The noise is estimated and updated by adaptively smoothing the noisy signal power in each band. The smoothing parameter is controlled by a-posteriori signal-to-noise ratio (SNR). For the performance analysis of the proposed algorithm, the objective measures, such as, SNR, segmental SNR, and perceptual evaluations of the speech quality are conducted for the variety of noises at different levels of SNRs. The speech spectrogram and objective evaluations of the proposed algorithm are compared with other standard speech enhancement algorithms and proved that the musical structure of the remnant noise and background noise is better suppressed by the proposed algorithm.展开更多
Single-channel sewage pumps are generally used to transport solid-liquid two-phase media consisting of a fluid and solid particles due to the good non-clogging property of such devices.However,the non-axisymmetric str...Single-channel sewage pumps are generally used to transport solid-liquid two-phase media consisting of a fluid and solid particles due to the good non-clogging property of such devices.However,the non-axisymmetric structure of the impeller of this type of pumps generally induces flow asymmetry,oscillatory outflow during operations,and hydraulic imbalance.In severe cases,these effects can jeopardize the safety and stability of the overall pump.In the present study,such a problem is investigated in the framework of a Mixture multiphase flow method coupled with a RNG turbulence model used to determine the structure of the flow field and the related motion of transported particles.It is shown that under different inlet particle concentrations,the flow field in the pump exhibits periodic variations of the pressure.The volume fraction of solid particles at the trailing edge of the suction surface of the blade is the largest,and solid particles tend to be concentrated at the outer edge of the pump body.With a rise in import particle content,the pressure and volume fraction of particles in the sewage pump also increase;for a fixed inlet particle concentration,the pressure pulsation amplitude increases with an increase in the flow rate.In addition,under small flow conditions,as the inlet particle concentration increases,the flow field leaving the sewage pump diaphragm near the outlet of the volute becomes more turbulent,and even a secondary back-flow vortex appears.展开更多
The performance of multi-channel Compressive Sensing (CS)-based Direction-of-Arrival (DOA) estimation algorithm degrades when the gains between Radio Frequency (RF) channels are inconsistent, and when target angle inf...The performance of multi-channel Compressive Sensing (CS)-based Direction-of-Arrival (DOA) estimation algorithm degrades when the gains between Radio Frequency (RF) channels are inconsistent, and when target angle information mismatches with system sensing model. To solve these problems, a novel single-channel CS-based DOA estimation algorithm via sensing model optimization is proposed. Firstly, a DOA sparse sensing model using single-channel array considering the sensing model mismatch is established. Secondly, a new single-channel CS-based DOA estimation algorithm is presented. The basic idea behind the proposed algorithm is to iteratively solve two CS optimizations with respect to target angle information vector and sensing model quantization error vector, respectively. In addition, it avoids the loss of DOA estimation performance caused by the inconsistent gain between RF channels. Finally, simulation results are presented to verify the efficacy of the proposed algorithm.展开更多
Vibration signals from diesel engine contain many different components mainly caused by combustion and mechanism operations,several blind source separation techniques are available for decomposing the signal into its ...Vibration signals from diesel engine contain many different components mainly caused by combustion and mechanism operations,several blind source separation techniques are available for decomposing the signal into its components in the case of multichannel measurements,such as independent component analysis(ICA).However,the source separation of vibration signal from single-channel is impossible.In order to study the source separation from single-channel signal for the purpose of source extraction,the combination method of empirical mode decomposition(EMD) and ICA is proposed in diesel engine signal processing.The performance of the described methods of EMD-wavelet and EMD-ICA in vibration signal application is compared,and the results show that EMD-ICA method outperforms the other,and overcomes the drawback of ICA in the case of single-channel measurement.The independent source signal components can be separated and identified effectively from one-channel measurement by EMD-ICA.Hence,EMD-ICA improves the extraction and identification abilities of source signals from diesel engine vibration measurements.展开更多
The glaucoma surgical landscape has changed dramatically over the last decade with the introduction and integration of micro-invasive glaucoma surgery(MIGS)techniques.These modalities target physiologic outflow pathwa...The glaucoma surgical landscape has changed dramatically over the last decade with the introduction and integration of micro-invasive glaucoma surgery(MIGS)techniques.These modalities target physiologic outflow pathways or optimize previously utilized glaucoma surgical methods in order to deliver safety,efficacy,and individualized care to the patient.MIGS techniques can be classified based on anatomical location as well as method of intraocular pressure(IOP)reduction.This review will focus on MIGS optimizing the conventional outflow pathway via intervention at Schlemm’s canal,MIGS optimizing the uveoscleral outflow pathway via suprachoroidal shunting,and MIGS optimizing the transscleral or subconjunctival outflow pathway which has long been utilized by glaucoma surgeons performing traditional filtration procedures.The wide array of currently available MIGS modalities can be staggering to the glaucoma care provider,but an understanding of the landscape and the large classes of interventional strategies can allow for clinical decision making based on the specifics of the patient’s needs and the pathophysiology of their disease.展开更多
Coal fire burning around the world is an environmental catastrophe characterized by the emission of noxious gases, particulate matter, and condensation by-products. In this study, coal fire temperature is retrieved ba...Coal fire burning around the world is an environmental catastrophe characterized by the emission of noxious gases, particulate matter, and condensation by-products. In this study, coal fire temperature is retrieved based on Landsat 5 TM images and Generalized Single-Channel Algorithm (GSCA), in Wuda coalfield, Inner Mongolia, China. Then coal fire zones are extracted by Jenks′ natural breaks and threshold methods based on temperature images. Changes of coal fire zones are analyzed from 1989 to 2008. The results are summarized as follows: 1) The coal fire temperature retrieval method based on Landsat 5 TM and the GSCA model is effective and feasible, because the temperature error is relatively small (from –2.9℃ to +2.6℃) between the measured temperature and the retrieved temperature. 2) The accuracy is relatively high to extract coal fire zones through the Jenks′ natural breaks and threshold methods, because 83.56% of surveyed area is located in the coal fire zones extracted in 2005. 3) The coal fire area increased 9.81 × 10 5 m 2 from 1989 to 2005, and the annual growth is about 6.1 × 10 4 m 2 , with an annual increasing rate of 2.48%. The area of coal fire decreased by 8.1 × 10 5 m 2 from 2005 to 2008.展开更多
With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedo...With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedout in a column with a monolithic bed of cell density of 50 cpsi with trio different distributors (nozzle and packed bed distributors). Liquid saturation in individual channels was measured by using self-made micro-conductivity probes. A mal-distribution factor was used to evaluate uniform degree of phase distribution in monoliths. Overall bed pressure drop and mass transfer coefficients were measured. For liquid flow distribution and gas-liquid masstransfer, it is found that the superficial liquid velocity is a crucial factor and the packed bed distributor is better than the nozzle distributor. A semi-theoretical analysis using single channel models shows that the packed bed distributor always yields shorter and uniformly distributed liquid slugs compared to the nozzle distributor, which in turn ensures a better mass transfer performance. A bed scale mass transfer model is proposed by employing the single channel models in individual channels and incorporating effects of non-uniform liquid distribution along the bedcross-section. The model predicts the overall gas-liquid mass transfer coefficient wig a relative error within +30%.展开更多
Objective:To evaluate the clinical therapeutic effects of oral administration and external application of Chinese drugs combined with micro-invasive surgery for the treatment of varicose ulcers in the lower extremitie...Objective:To evaluate the clinical therapeutic effects of oral administration and external application of Chinese drugs combined with micro-invasive surgery for the treatment of varicose ulcers in the lower extremities(ecthyma).Methods:A total of 152 patients(163 limbs) suffering from varicose ulcers on the lower limbs were assigned to two groups according to the patients willingness.The 102 cases(109 limbs) in the treatment group underwent the method of endovenous microwave closure of communicating veins ...展开更多
A novel single-channel blind separation algorithm for permuted motion blurred images is proposed by using blind restoration in this paper. Both the motion direction and the length of the point spread function (PSF) ...A novel single-channel blind separation algorithm for permuted motion blurred images is proposed by using blind restoration in this paper. Both the motion direction and the length of the point spread function (PSF) are estimated by Radon transformation and extrema a detection. Using the estimated blur parameters, the permuted image is restored by performing the L-R blind restoration method. The permutation mixing matrices can be accurately estimated by classifying the ringing effect in the restored image, thereby the source images can be separated. Simulation results show a better separation efficiency for the permuted motion blurred image with various permutation operations. The proposed algorithm indicates a better performance on the robustness against Gaussian noise and lossy JPEG compression.展开更多
Engineering construction actively occurs in coastal zones, and these areas have numerous potential geological hazard factors. Since 2009, the development of geological surveys in sea areas has promoted extensive geoph...Engineering construction actively occurs in coastal zones, and these areas have numerous potential geological hazard factors. Since 2009, the development of geological surveys in sea areas has promoted extensive geophysical surveys in Qingdao offshore. In the present study, the types and distribution of potential geological hazard factors were systematically revealed using sub-bottom profile data, side-scan sonar data, and single-channel seismic data, among others. Based on previous research findings, the potential geological hazard factors are classified, and control factors in Qingdao offshore are discussed. The research results show that the primary potential geological hazards include active faults, buried paleo channels, shallow gas, irregular bedrock, eroded gullies, estuary deltas, tidal sand ridges, and seawater intrusion. In addition, neotectonic movement, sea level changes and sedimentary dynamic processes were the main factors that affected the distribution of geological hazards in Qingdao offshore.展开更多
Background Electroencephalography(EEG)has gained popularity in various types of biomedical applications as a signal source that can be easily acquired and conveniently analyzed.However,owing to a complex scalp electri...Background Electroencephalography(EEG)has gained popularity in various types of biomedical applications as a signal source that can be easily acquired and conveniently analyzed.However,owing to a complex scalp electrical environment,EEG is often polluted by diverse artifacts,with electromyography artifacts being the most difficult to remove.In particular,for ambulatory EEG devices with a restricted number of channels,dealing with muscle artifacts is a challenge.Methods In this study,we propose a simple but effective novel scheme that combines singular spectrum analysis(SSA)and canonical correlation analysis(CCA)algorithms for single-channel problems and then extend it to a few channel case by adding additional combining and dividing operations to channels.Results We evaluated our proposed framework on both semi-simulated and real-life data and compared it with some state-of-the art methods.The results demonstrate this novel framework's superior performance in both single-channel and few-channel cases.Conclusions This promising approach,based on its effectiveness and low time cost,is suitable for real-world biomedical signal processing applications.展开更多
The Neogene fluvial reservoir in the Bohai oilfield is one of the leading development horizons for increasing reserves and production in the Bohai oilfield. However, the development of offshore fluvial reservoirs is f...The Neogene fluvial reservoir in the Bohai oilfield is one of the leading development horizons for increasing reserves and production in the Bohai oilfield. However, the development of offshore fluvial reservoirs is faced with the problems of thin reservoir thickness, narrow plane width, rapid lateral change, and thin well pattern. Taking the KLA oilfield as an example, this paper discusses the nuanced characterization and configuration of a single channel controlled by sedimentary facies to guide developing offshore river facies’ narrow channel main control oilfield. Firstly, based on a large number of core data, the acceptable sedimentary facies identification is realized, the sedimentary model of the study area is established, the delicate calibration of logging facies and seismic facies is realized under the constraint of the sedimentary model, and a set of technical methods for nuanced reservoir characterization guided by seismic sedimentology is summarized, to realize the boundary identification of composite channel configuration and further realize the nuanced characterization of the single narrow channel. Based on this set of technology, it guides the smooth implementation of horizontal wells in the oilfield. The drilling encounter rate of the reservoir in the horizontal section of the single well exceeds 90%, ensuring the injection production connectivity and increasing the reserve production rate by more than 10%.展开更多
Based on a single-channel laser self-mixing interferometcr, we present a new silnultaneous measurement of the vibration amplitude and tile rotation angle of objects that both affect the power spectrum containing two p...Based on a single-channel laser self-mixing interferometcr, we present a new silnultaneous measurement of the vibration amplitude and tile rotation angle of objects that both affect the power spectrum containing two peaks of the interferometer signals. The fitted results indicate that the curve of the peak frequency versus the vibration amplitude follows a linear distribution, and the curve of the difference of the two-peak power values versus the angle follows a Gaussian distribution. A vibration amplitude with an error less than 3.0% and a rotation angle with an error less than 11.7% are calculated from the fitted results.展开更多
Single-channel separation (SCS) is a challenging scenario where the objective is to segregate speaker signals from their mixture with high accuracy. In this research a novel framework called subband perceptually weigh...Single-channel separation (SCS) is a challenging scenario where the objective is to segregate speaker signals from their mixture with high accuracy. In this research a novel framework called subband perceptually weighted transformation (SPWT) is developed to offer a perceptually relevant feature to replace the commonly used magnitude of the short-time Fourier transform (STFT). The main objectives of the proposed SPWT are to lower the spectral distortion (SD) and to improve the ideal separation quality. The performance of the SPWT is compared to those obtained using mixmax and Wiener filter methods. A comprehensive statistical analysis is conducted to compare the SPWT quantization performance as well as the ideal separation quality with other features of log-spectrum and magnitude spectrum. Our evaluations show that the SPWT provides lower SD values and a more compact distribution of SD,leading to more acceptable subjective separation quality as evaluated using the mean opinion score.展开更多
For the time-frequency overlapped signals, a low-complexity single-channel blind source separation (SBSS) algorithm is proposed in this paper. The algorithm does not only introduce the Gibbs sampling theory to separ...For the time-frequency overlapped signals, a low-complexity single-channel blind source separation (SBSS) algorithm is proposed in this paper. The algorithm does not only introduce the Gibbs sampling theory to separate the mixed signals, but also adopts the orthogonal triangle decomposition-M (QRD-M) to reduce the computational complexity. According to analysis and simulation results, we demonstrate that the separation performance of the proposed algorithm is similar to that of the per-survivor processing (PSP) algorithm, while its computational complexity is sharply reduced.展开更多
Satellite images are used extensively in studying the urban heat island(UHI) phenomenon.We evaluated the suitability of thermal infrared(TIR) data from the HJ-1B satellite for detecting UHI using a case study in Beiji...Satellite images are used extensively in studying the urban heat island(UHI) phenomenon.We evaluated the suitability of thermal infrared(TIR) data from the HJ-1B satellite for detecting UHI using a case study in Beijing.Two modified algorithms for retrieving the land surface temperature(LST) from HJ-1B data were tested.The results were compared with LST images derived from a Landsat TM thermal band and the MODIS LST output.The spatial pattern of UHI generated using HJ-1B data matched well with that produced using TM and MODIS data.Of the two algorithms,the mono-window algorithm performed better but further tests are necessary.With more frequent coverage than TM and higher spatial resolution than MODIS,the HJ-1B TIR data present a unique opportunity to study thermal environments in cities in China and neighboring countries.展开更多
基金the National Natural Science Foundation of China, No. 3057062830770751
文摘AIM: This study aimed to expound the individual idea of micro-invasive surgery from pre-operative preparation, intra-operative processing and post-operative management. METHODS: Pre-operative preparation was improved by analyzing pathological factors and hematoma property, and considering patients' age, basic disease, blood pressure control, with persistent haemorrhagia/rehaemorrhagia or not, operative occasion choice, positioning and other procedures. In the surgery, positioner was used. Initial aspiration volume was cautiously controlled. After operation, vital signs of patients were kept stable by cautiously using hematoma liquefacient and combining with free radical scavenger. RESULTS: The core content of individual micro-invasive surgery was mainly to relieve intracranial pressure. Under the condition of sufficient pre-operative preparation known by patients' family members, precise positioning was determined and individual therapeutic regimen was made. Meanwhile, caution should be taken in hematoma aspiration. Liquefaction and drainage should be paid more attention, and complications were processed actively. CONCLUSION: During the process of micro-invasive evacuation of intracranial hematoma for treating cerebral hemorrhage, attention should be paid to analyzing cerebral hematoma etiology and pathophysiological mechanism, and individual idea should be considered in surgical treatment aiming at patients' concrete disease condition.
文摘Objective The cardiac synchronization therapy (CRT) was proven to have good treatment for the cardiacconduction disorders patients with serious heart failure. But many disadvantages were gradually be noticed,such as difficulty of sinus electrode implantation,coronary sinus injury and bleeding,still one third
基金National Natural Science Foundation of China(NSFC)(No.61671075)Major Program of National Natural Science Foundation of China(No.61631003)。
文摘Aiming at the problem of music noise introduced by classical spectral subtraction,a shorttime modulation domain(STM)spectral subtraction method has been successfully applied for singlechannel speech enhancement.However,due to the inaccurate voice activity detection(VAD),the residual music noise and enhanced performance still need to be further improved,especially in the low signal to noise ratio(SNR)scenarios.To address this issue,an improved frame iterative spectral subtraction in the STM domain(IMModSSub)is proposed.More specifically,with the inter-frame correlation,the noise subtraction is directly applied to handle the noisy signal for each frame in the STM domain.Then,the noisy signal is classified into speech or silence frames based on a predefined threshold of segmented SNR.With these classification results,a corresponding mask function is developed for noisy speech after noise subtraction.Finally,exploiting the increased sparsity of speech signal in the modulation domain,the orthogonal matching pursuit(OMP)technique is employed to the speech frames for improving the speech quality and intelligibility.The effectiveness of the proposed method is evaluated with three types of noise,including white noise,pink noise,and hfchannel noise.The obtained results show that the proposed method outperforms some established baselines at lower SNRs(-5 to +5 dB).
文摘A multidisciplinary optimization was conducted to simultaneously improve the efficiency and reduce the radial force of a single-channel pump for wastewater treatment. A hybrid multi-objective evolutionary algorithm was coupled with a surrogate model to optimize the geometry of the single-channel pump volute. Steady and unsteady Reynolds-averaged Navier-Stokes equations with a shear stress transport turbulence model were discretized using finite volume approximations and were then solved on tetrahedral grids to analyze the flow in the single-channel pump. The three objective functions represented the total efficiency, the sweep area of the radial force during one revolution, and the distance of the mass center of sweep area from the origin while the two design variables were related to the cross-sectional area of the internal flow of the volute. Latin hypercube sampling was employed to generate twelve design points within the design space, and response surface approximation models were constructed as surrogate models for the objectives based on the values of the objective function at the given design points. A fast non-dominated sorting genetic algorithm for local search was coupled with the surrogate models to determine the global Pareto-optimal solutions. The trade-off between the objectives was determined and was described in terms of the Pareto-optimal solutions. The results of the multi-objective optimization showed that the optimum design simultaneously improved the efficiency and reduced the radial force relative to those of the reference design.
文摘This paper addresses the problem of single-channel speech enhancement in the adverse environment. The critical-band rate scale based on improved multi-band spectral subtraction is investigated in this study for enhancement of single-channel speech. In this work, the whole speech spectrum is divided into different non-uniformly spaced frequency bands in accordance with the critical-band rate scale of the psycho-acoustic model and the spectral over-subtraction is carried-out separately in each band. In addition, for the estimation of the noise from each band, the adaptive noise estimation approach is used and does not require explicit speech silence detection. The noise is estimated and updated by adaptively smoothing the noisy signal power in each band. The smoothing parameter is controlled by a-posteriori signal-to-noise ratio (SNR). For the performance analysis of the proposed algorithm, the objective measures, such as, SNR, segmental SNR, and perceptual evaluations of the speech quality are conducted for the variety of noises at different levels of SNRs. The speech spectrogram and objective evaluations of the proposed algorithm are compared with other standard speech enhancement algorithms and proved that the musical structure of the remnant noise and background noise is better suppressed by the proposed algorithm.
基金the Welfare Technology Applied Research Project of Zhejiang Province(No.LGG21E090003)Open Research Subject of Research Center on Levee Safety Disaster Prevention,Ministry of Water Resources.
文摘Single-channel sewage pumps are generally used to transport solid-liquid two-phase media consisting of a fluid and solid particles due to the good non-clogging property of such devices.However,the non-axisymmetric structure of the impeller of this type of pumps generally induces flow asymmetry,oscillatory outflow during operations,and hydraulic imbalance.In severe cases,these effects can jeopardize the safety and stability of the overall pump.In the present study,such a problem is investigated in the framework of a Mixture multiphase flow method coupled with a RNG turbulence model used to determine the structure of the flow field and the related motion of transported particles.It is shown that under different inlet particle concentrations,the flow field in the pump exhibits periodic variations of the pressure.The volume fraction of solid particles at the trailing edge of the suction surface of the blade is the largest,and solid particles tend to be concentrated at the outer edge of the pump body.With a rise in import particle content,the pressure and volume fraction of particles in the sewage pump also increase;for a fixed inlet particle concentration,the pressure pulsation amplitude increases with an increase in the flow rate.In addition,under small flow conditions,as the inlet particle concentration increases,the flow field leaving the sewage pump diaphragm near the outlet of the volute becomes more turbulent,and even a secondary back-flow vortex appears.
文摘The performance of multi-channel Compressive Sensing (CS)-based Direction-of-Arrival (DOA) estimation algorithm degrades when the gains between Radio Frequency (RF) channels are inconsistent, and when target angle information mismatches with system sensing model. To solve these problems, a novel single-channel CS-based DOA estimation algorithm via sensing model optimization is proposed. Firstly, a DOA sparse sensing model using single-channel array considering the sensing model mismatch is established. Secondly, a new single-channel CS-based DOA estimation algorithm is presented. The basic idea behind the proposed algorithm is to iteratively solve two CS optimizations with respect to target angle information vector and sensing model quantization error vector, respectively. In addition, it avoids the loss of DOA estimation performance caused by the inconsistent gain between RF channels. Finally, simulation results are presented to verify the efficacy of the proposed algorithm.
基金supported by National Natural Science Foundation of China (Grant No. 50975192)Tianjin Municipal Natural Science Foundation of China (Grant No. 10YFJZJC14100)
文摘Vibration signals from diesel engine contain many different components mainly caused by combustion and mechanism operations,several blind source separation techniques are available for decomposing the signal into its components in the case of multichannel measurements,such as independent component analysis(ICA).However,the source separation of vibration signal from single-channel is impossible.In order to study the source separation from single-channel signal for the purpose of source extraction,the combination method of empirical mode decomposition(EMD) and ICA is proposed in diesel engine signal processing.The performance of the described methods of EMD-wavelet and EMD-ICA in vibration signal application is compared,and the results show that EMD-ICA method outperforms the other,and overcomes the drawback of ICA in the case of single-channel measurement.The independent source signal components can be separated and identified effectively from one-channel measurement by EMD-ICA.Hence,EMD-ICA improves the extraction and identification abilities of source signals from diesel engine vibration measurements.
文摘The glaucoma surgical landscape has changed dramatically over the last decade with the introduction and integration of micro-invasive glaucoma surgery(MIGS)techniques.These modalities target physiologic outflow pathways or optimize previously utilized glaucoma surgical methods in order to deliver safety,efficacy,and individualized care to the patient.MIGS techniques can be classified based on anatomical location as well as method of intraocular pressure(IOP)reduction.This review will focus on MIGS optimizing the conventional outflow pathway via intervention at Schlemm’s canal,MIGS optimizing the uveoscleral outflow pathway via suprachoroidal shunting,and MIGS optimizing the transscleral or subconjunctival outflow pathway which has long been utilized by glaucoma surgeons performing traditional filtration procedures.The wide array of currently available MIGS modalities can be staggering to the glaucoma care provider,but an understanding of the landscape and the large classes of interventional strategies can allow for clinical decision making based on the specifics of the patient’s needs and the pathophysiology of their disease.
基金Under the auspices of International Program for Cooperation in Science and Technology (No. 2007DFA20640)National High Technology Research and Development Program of China (No. 2009AA12Z146, 2009AA12Z124)National Natural Science Foundation of China (No. 40701172)
文摘Coal fire burning around the world is an environmental catastrophe characterized by the emission of noxious gases, particulate matter, and condensation by-products. In this study, coal fire temperature is retrieved based on Landsat 5 TM images and Generalized Single-Channel Algorithm (GSCA), in Wuda coalfield, Inner Mongolia, China. Then coal fire zones are extracted by Jenks′ natural breaks and threshold methods based on temperature images. Changes of coal fire zones are analyzed from 1989 to 2008. The results are summarized as follows: 1) The coal fire temperature retrieval method based on Landsat 5 TM and the GSCA model is effective and feasible, because the temperature error is relatively small (from –2.9℃ to +2.6℃) between the measured temperature and the retrieved temperature. 2) The accuracy is relatively high to extract coal fire zones through the Jenks′ natural breaks and threshold methods, because 83.56% of surveyed area is located in the coal fire zones extracted in 2005. 3) The coal fire area increased 9.81 × 10 5 m 2 from 1989 to 2005, and the annual growth is about 6.1 × 10 4 m 2 , with an annual increasing rate of 2.48%. The area of coal fire decreased by 8.1 × 10 5 m 2 from 2005 to 2008.
基金Supported by the State Key Development Program for Basic Research of China (2006CB202503)
文摘With a particular focus on the connection between liquid flow distribution and gas-liquid mass transfer in monolithic beds in the Taylor flow regime, hydrodynamic and gas-liquid mass transfer experiments were carriedout in a column with a monolithic bed of cell density of 50 cpsi with trio different distributors (nozzle and packed bed distributors). Liquid saturation in individual channels was measured by using self-made micro-conductivity probes. A mal-distribution factor was used to evaluate uniform degree of phase distribution in monoliths. Overall bed pressure drop and mass transfer coefficients were measured. For liquid flow distribution and gas-liquid masstransfer, it is found that the superficial liquid velocity is a crucial factor and the packed bed distributor is better than the nozzle distributor. A semi-theoretical analysis using single channel models shows that the packed bed distributor always yields shorter and uniformly distributed liquid slugs compared to the nozzle distributor, which in turn ensures a better mass transfer performance. A bed scale mass transfer model is proposed by employing the single channel models in individual channels and incorporating effects of non-uniform liquid distribution along the bedcross-section. The model predicts the overall gas-liquid mass transfer coefficient wig a relative error within +30%.
基金Supported by the Funds of Shanghai Health Bureau(No. 2007156)
文摘Objective:To evaluate the clinical therapeutic effects of oral administration and external application of Chinese drugs combined with micro-invasive surgery for the treatment of varicose ulcers in the lower extremities(ecthyma).Methods:A total of 152 patients(163 limbs) suffering from varicose ulcers on the lower limbs were assigned to two groups according to the patients willingness.The 102 cases(109 limbs) in the treatment group underwent the method of endovenous microwave closure of communicating veins ...
基金Project supported by the National Natural Science Foundation of China (Grant No.60872114)the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Graduate Student Innovation Foundation of Shanghai University (Grant No.SHUCX101086)
文摘A novel single-channel blind separation algorithm for permuted motion blurred images is proposed by using blind restoration in this paper. Both the motion direction and the length of the point spread function (PSF) are estimated by Radon transformation and extrema a detection. Using the estimated blur parameters, the permuted image is restored by performing the L-R blind restoration method. The permutation mixing matrices can be accurately estimated by classifying the ringing effect in the restored image, thereby the source images can be separated. Simulation results show a better separation efficiency for the permuted motion blurred image with various permutation operations. The proposed algorithm indicates a better performance on the robustness against Gaussian noise and lossy JPEG compression.
基金jointed funded by the National Natural Science Foundation of China (41376079 and 41276060)Marine Geology Survey Project (GZH200900501,DD20160137 and DD20190205)Foundation of the Shandong Provincial Key Laboratory of Marine Ecology and Environment&Disaster Prevention (201304).
文摘Engineering construction actively occurs in coastal zones, and these areas have numerous potential geological hazard factors. Since 2009, the development of geological surveys in sea areas has promoted extensive geophysical surveys in Qingdao offshore. In the present study, the types and distribution of potential geological hazard factors were systematically revealed using sub-bottom profile data, side-scan sonar data, and single-channel seismic data, among others. Based on previous research findings, the potential geological hazard factors are classified, and control factors in Qingdao offshore are discussed. The research results show that the primary potential geological hazards include active faults, buried paleo channels, shallow gas, irregular bedrock, eroded gullies, estuary deltas, tidal sand ridges, and seawater intrusion. In addition, neotectonic movement, sea level changes and sedimentary dynamic processes were the main factors that affected the distribution of geological hazards in Qingdao offshore.
基金Supported by the National Natural Science Foundation of China(61922075)the USTC Research Funds of the Double First-Class Initiative(YD2100002004).
文摘Background Electroencephalography(EEG)has gained popularity in various types of biomedical applications as a signal source that can be easily acquired and conveniently analyzed.However,owing to a complex scalp electrical environment,EEG is often polluted by diverse artifacts,with electromyography artifacts being the most difficult to remove.In particular,for ambulatory EEG devices with a restricted number of channels,dealing with muscle artifacts is a challenge.Methods In this study,we propose a simple but effective novel scheme that combines singular spectrum analysis(SSA)and canonical correlation analysis(CCA)algorithms for single-channel problems and then extend it to a few channel case by adding additional combining and dividing operations to channels.Results We evaluated our proposed framework on both semi-simulated and real-life data and compared it with some state-of-the art methods.The results demonstrate this novel framework's superior performance in both single-channel and few-channel cases.Conclusions This promising approach,based on its effectiveness and low time cost,is suitable for real-world biomedical signal processing applications.
文摘The Neogene fluvial reservoir in the Bohai oilfield is one of the leading development horizons for increasing reserves and production in the Bohai oilfield. However, the development of offshore fluvial reservoirs is faced with the problems of thin reservoir thickness, narrow plane width, rapid lateral change, and thin well pattern. Taking the KLA oilfield as an example, this paper discusses the nuanced characterization and configuration of a single channel controlled by sedimentary facies to guide developing offshore river facies’ narrow channel main control oilfield. Firstly, based on a large number of core data, the acceptable sedimentary facies identification is realized, the sedimentary model of the study area is established, the delicate calibration of logging facies and seismic facies is realized under the constraint of the sedimentary model, and a set of technical methods for nuanced reservoir characterization guided by seismic sedimentology is summarized, to realize the boundary identification of composite channel configuration and further realize the nuanced characterization of the single narrow channel. Based on this set of technology, it guides the smooth implementation of horizontal wells in the oilfield. The drilling encounter rate of the reservoir in the horizontal section of the single well exceeds 90%, ensuring the injection production connectivity and increasing the reserve production rate by more than 10%.
基金supported by the National Natural Science Foundation of China under Grant Nos.61275165,61201401,and 61307098
文摘Based on a single-channel laser self-mixing interferometcr, we present a new silnultaneous measurement of the vibration amplitude and tile rotation angle of objects that both affect the power spectrum containing two peaks of the interferometer signals. The fitted results indicate that the curve of the peak frequency versus the vibration amplitude follows a linear distribution, and the curve of the difference of the two-peak power values versus the angle follows a Gaussian distribution. A vibration amplitude with an error less than 3.0% and a rotation angle with an error less than 11.7% are calculated from the fitted results.
文摘Single-channel separation (SCS) is a challenging scenario where the objective is to segregate speaker signals from their mixture with high accuracy. In this research a novel framework called subband perceptually weighted transformation (SPWT) is developed to offer a perceptually relevant feature to replace the commonly used magnitude of the short-time Fourier transform (STFT). The main objectives of the proposed SPWT are to lower the spectral distortion (SD) and to improve the ideal separation quality. The performance of the SPWT is compared to those obtained using mixmax and Wiener filter methods. A comprehensive statistical analysis is conducted to compare the SPWT quantization performance as well as the ideal separation quality with other features of log-spectrum and magnitude spectrum. Our evaluations show that the SPWT provides lower SD values and a more compact distribution of SD,leading to more acceptable subjective separation quality as evaluated using the mean opinion score.
基金supported by the National Natural Science Foundation of China (61501084)
文摘For the time-frequency overlapped signals, a low-complexity single-channel blind source separation (SBSS) algorithm is proposed in this paper. The algorithm does not only introduce the Gibbs sampling theory to separate the mixed signals, but also adopts the orthogonal triangle decomposition-M (QRD-M) to reduce the computational complexity. According to analysis and simulation results, we demonstrate that the separation performance of the proposed algorithm is similar to that of the per-survivor processing (PSP) algorithm, while its computational complexity is sharply reduced.
基金supported by Startup Fund for Talented Scholars,Beijing Forestry University (Grant No.0001115000)State Key Laboratory of Remote Sensing Science Open Fund (Grant No.2009KFJJ021)+1 种基金sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal UniversityNational Key Technology Research and Development Program of China (Grant No.2009AA12200101)
文摘Satellite images are used extensively in studying the urban heat island(UHI) phenomenon.We evaluated the suitability of thermal infrared(TIR) data from the HJ-1B satellite for detecting UHI using a case study in Beijing.Two modified algorithms for retrieving the land surface temperature(LST) from HJ-1B data were tested.The results were compared with LST images derived from a Landsat TM thermal band and the MODIS LST output.The spatial pattern of UHI generated using HJ-1B data matched well with that produced using TM and MODIS data.Of the two algorithms,the mono-window algorithm performed better but further tests are necessary.With more frequent coverage than TM and higher spatial resolution than MODIS,the HJ-1B TIR data present a unique opportunity to study thermal environments in cities in China and neighboring countries.