期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
不同长度micro-lysimeters对测定土壤蒸发的影响 被引量:31
1
作者 孙宏勇 刘昌明 +2 位作者 张喜英 张永强 沈彦俊 《西北农林科技大学学报(自然科学版)》 CSCD 北大核心 2003年第4期167-170,共4页
研究了 5 ,10 ,15 ,2 0 ,2 5 cm共 5种不同长度处理和内壁有孔、内外壁均有孔 2种处理由 PVC管制成的 micro- lysimeters对土壤蒸发的影响。结果表明 :降雨后 5 ,10 cm处理的土壤水分蒸发较快 ,15 ,2 0 ,2 5 cm处理的变化不明显 ,可以利... 研究了 5 ,10 ,15 ,2 0 ,2 5 cm共 5种不同长度处理和内壁有孔、内外壁均有孔 2种处理由 PVC管制成的 micro- lysimeters对土壤蒸发的影响。结果表明 :降雨后 5 ,10 cm处理的土壤水分蒸发较快 ,15 ,2 0 ,2 5 cm处理的变化不明显 ,可以利用 15 cm长的 m icro- lysimeters测定土壤蒸发 ;壁上有孔处理的蒸发要高于同样长度的无孔处理。 展开更多
关键词 长度 micro-lysimeters 测定技术 土壤蒸发 影响因素
下载PDF
用Micro-Lysimeters和大型蒸渗仪测定夏玉米蒸散的研究 被引量:24
2
作者 孙宏勇 张喜英 +1 位作者 张永强 刘昌明 《干旱地区农业研究》 CSCD 北大核心 2002年第4期72-75,共4页
利用大型称重式蒸渗仪和自制的Micro-Lysimeters对夏玉米生育期的蒸散量进行了研究。研究发现夏玉米整个生育期的棵间蒸发占总蒸散量的36.01%,其中大部分集中在生育前期;不同深度层次的土壤水分和棵间蒸发与蒸散量的比例(E/ETwd)随着深... 利用大型称重式蒸渗仪和自制的Micro-Lysimeters对夏玉米生育期的蒸散量进行了研究。研究发现夏玉米整个生育期的棵间蒸发占总蒸散量的36.01%,其中大部分集中在生育前期;不同深度层次的土壤水分和棵间蒸发与蒸散量的比例(E/ETwd)随着深度的增加相关性越来越弱,10cm土壤含水量与E/ETwd的相关系数R2=81.23%,30cm土壤含水量与E/ETwd的相关系数R2=46.47%,50cm土壤含水量与E/ETwd的相关系数R2=34.09%;叶面积指数与E/ETwd也有密切的关系,相关系数R2=87.47%。 展开更多
关键词 micro-lysimeters 蒸渗仪 夏玉米 蒸散测定
下载PDF
微型蒸发器测定土面蒸发的试验研究 被引量:88
3
作者 孙宏勇 刘昌明 +1 位作者 张永强 张喜英 《水利学报》 EI CSCD 北大核心 2004年第8期114-118,共5页
本文通过对比不同微型蒸发器(Micro lysimeters,简称MLS)对测定土面蒸发的试验,以5cm长的MLS每天更换土体作为对照,发现15cm是比较理想的最短长度。同时,对影响土壤蒸发的外界因素进行了分析。结果显示,气象因素中相对湿度、饱和水气压... 本文通过对比不同微型蒸发器(Micro lysimeters,简称MLS)对测定土面蒸发的试验,以5cm长的MLS每天更换土体作为对照,发现15cm是比较理想的最短长度。同时,对影响土壤蒸发的外界因素进行了分析。结果显示,气象因素中相对湿度、饱和水气压差和辐射同土壤蒸发有着密切的关系,在P=0 05水平下均达到显著水平。此外,表层土壤含水量也是一个重要影响因素。 展开更多
关键词 micro-lysimeters 土壤蒸发 外界因素 影响
下载PDF
A proposed surface resistance model for the Penman-Monteith formula to estimate evapotranspiration in a solar greenhouse 被引量:12
4
作者 GONG Xuewen LIU Hao +6 位作者 SUN Jingsheng GAO Yang ZHANG Xiaoxian Shiva K JHA ZHANG Hao MA Xiaojian WANG Wanning 《Journal of Arid Land》 SCIE CSCD 2017年第4期530-546,共17页
Greenhousing is a technique to bridge season gap in vegetable production and has been widely used worldwide. Calculation of water requirement of crops grown in greenhouse and determination of their irrigation schedule... Greenhousing is a technique to bridge season gap in vegetable production and has been widely used worldwide. Calculation of water requirement of crops grown in greenhouse and determination of their irrigation schedules in arid and semi-arid regions are essential for greenhouse maintenance and have thus attracted increased attention over the past decades. The most common method used in the literature to estimate crop evapotranspiration(ET) is the Penman-Monteith(PM) formula. When applied to greenhouse, however, it often uses canopy resistance instead of surface resistance. It is understood that the surface resistance in greenhouse is the result of a combined effect of canopy restriction and soil-surface restriction to water vapor flow, and the relative dominance of one restriction over another depends on crop canopy. In this paper, we developed a surface resistance model in a way similar to two parallel resistances in an electrical circuit to account for both restrictions. Also, considering that wind speed in greenhouse is normally rather small, we compared three methods available in the literature to calculate the aerodynamic resistance, which are the r_a^1 method proposed by Perrier(1975a, b), the r_a^2 method proposed by Thom and Oliver(1977), and the r_a^3 method proposed by Zhang and Lemeu(1992). We validated the model against ET of tomatoes in a greenhouse measured from sap flow system combined with micro-lysimeter in 2015 and with weighing lysimeter in 2016. The results showed that the proposed surface resistance model improved the accuracy of the PM model, especially when the leaf area index was low and the greenhouse was being irrigated. We also found that the aerodynamic resistance calculated from the r_a^1 and r_a^3 methods is applicable to the greenhouse although the latter is slightly more accurate than the former. The proposed surface resistance model, together with the r_a^3 method for aerodynamic resistance, offers an improved approach to estimate ET in greenhouse using the PM formula. 展开更多
关键词 canopy resistance surface resistance aerodynamic resistance sap flow system micro-lysimeter weighing lysimeter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部