期刊文献+
共找到399篇文章
< 1 2 20 >
每页显示 20 50 100
Preparation and properties of thermal insulation coatings with a sodium stearate-modified shell powder as a filler 被引量:4
1
作者 Qiang Tang Ya-mei Zhang +3 位作者 Pei-gen Zhang Jin-jie Shi Wu-bian Tian Zheng-ming Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第10期1192-1199,共8页
Waste shell stacking with odor and toxicity is a serious hazard to our living environment. To make effective use of the natural resources, the shell powder was applied as a filler of outdoor thermal insulation coating... Waste shell stacking with odor and toxicity is a serious hazard to our living environment. To make effective use of the natural resources, the shell powder was applied as a filler of outdoor thermal insulation coatings. Sodium stearate(SS) was used to modify the properties of shell powder to reduce its agglomeration and to increase its compatibility with the emulsion. The oil absorption rate and the spectrum reflectance of the shell powder show that the optimized content of SS as a modifier is 1.5wt%. The total spectrum reflectance of the coating made with the shell powder that is modified at this optimum SS content is 9.33% higher than that without any modification. At the optimum SS content of 1.5wt%, the thermal insulation of the coatings is improved by 1.0℃ for the cement mortar board and 1.6℃ for the steel plate, respectively. The scouring resistance of the coating with the 1.5wt% SS-modified shell powder is three times that of the coating without modification. 展开更多
关键词 heat INSULATION coatings shell powder SODIUM STEARATE SCRUB resistance
下载PDF
Shell powder as a novel bio-filler for thermal insulation coatings 被引量:2
2
作者 Peigen Zhang Jingwen Tang +5 位作者 Qiang Tang Minzhao Zhang Luwei Shen Wubian Tian Yamei Zhang Zhengming Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第2期452-458,共7页
The feasibility of employing shell powder as a novel bio-filler to prepare fluorocarbon coating is demonstrated.According to the relevant Chinese standards, the thermal and mechanical properties of the shell powder-fi... The feasibility of employing shell powder as a novel bio-filler to prepare fluorocarbon coating is demonstrated.According to the relevant Chinese standards, the thermal and mechanical properties of the shell powder-filled fluorocarbon coating were evaluated, and compared with those filled by commercial calcium carbonate. All the shell powder-filled coatings can meet the requirements stated in the relevant standards, and with decreasing the particle size of the shell powders, the performance of the thermal insulation coating is enhanced. The coating(SC3) filled by shell powders with an average particle size of 2.81 μm possesses a better thermal insulation performance than the coating(CC) filled by commercial calcium carbonate. The coating SC3 has comparable adhesive force and washing resistance with the coating CC, and in the washing resistance test, after 2000 cycles, the coating SC3 was still able to cover totally their substrates. This work demonstrates a high value-added disposal method for the aquacultural wastes. 展开更多
关键词 Bio-filler FLUOROCARBON coating shell powder Thermal INSULATION
下载PDF
Studies on Mechanical and End-Use Properties of Natural Rubber Filled with Snail Shell Powder 被引量:1
3
作者 Isaac Ogbennaya Igwe Augustina Adanna Ejim 《Materials Sciences and Applications》 2011年第7期801-809,共9页
A series of natural rubber-snail shell powder vulcanizates were compounded on a two-roll mill, and moulded on a compression moulding machine. The mechanical and end-use properties of the natural rubber vulcanizates we... A series of natural rubber-snail shell powder vulcanizates were compounded on a two-roll mill, and moulded on a compression moulding machine. The mechanical and end-use properties of the natural rubber vulcanizates were investigated at snail shell powder contents, 0 to 20 pphr. The snail shell powder was characterized for filler properties and sieved to 0.075, and 0.30 μm particle sizes. Carbon black was used as the reference filler. Results showed that the tensile strength, modulus, elongation at break, and resilience of the rubber vulcanizates were not enhanced on addition of snail shell powder. The hardness of the rubber vulcanizes were marginally increased at high snail shell powder content. However, the specific gravity of the rubber vulcanizates showed increases with increase in snail shell powder content. At a filler content above 5 pphr, snail shell powder exhibited good flame retardant property in the vulcanizates. The swelling indices of snail shell powder (0.075 μm) filled natural rubber were generally good, and better than those of snail shell powder (0.30 μm) filled natural rubber. Carbon black was found to show more property improvement for the natural rubber vulcanizates when compared to snail shell powder. Although the mechanical properties of snail shell powder filled natural rubber vulcanizates were not good, there were improvements in the end-use properties, an indication that snail shell powder could still find utilization in the rubber industry where specific end-use property of a rubber product is required. 展开更多
关键词 SNAIL shell powder Natural Rubber Filleri VULCANIZATES MECHANICAL Properties
下载PDF
Synthesis and microwave characterization of Co-SiC core-shell powders by electroless plating 被引量:1
4
作者 ZHANG Haijun WU Xiangwei JIA Quanli JIA Xiaolin 《Rare Metals》 SCIE EI CAS CSCD 2006年第3期216-220,共5页
Co-SiC core-shell powders were prepared by electroless plating. Scanning electron microscopy (SEM) revealed that Co-SiC core-shell powders were of nearly sphere-like shape and were about 0.3 pan. X-ray powder diffra... Co-SiC core-shell powders were prepared by electroless plating. Scanning electron microscopy (SEM) revealed that Co-SiC core-shell powders were of nearly sphere-like shape and were about 0.3 pan. X-ray powder diffraction (XRD) patterns showed that the cobalt powder was hexagonal crystallite. The complex dielectric constant and the complex permeability of Co-SiC core-shell powders-paraffin wax composite were measured by the rectangle wavegnide method. It showed that the dielectric loss was less than 0.1 and the magnetic loss was about 0.2 in 8.2-12.4 GHz for prepared Co-SiC core-shell comoosite oowders. 展开更多
关键词 Co-SiC CORE-shell powderS electroless plating dielectric constant PERMEABILITY
下载PDF
Structure Characterization and Dephosphorization Effect Analysis of Oyster Shell-silica Micropowder Waste Water Dephosphorization Materials 被引量:2
5
作者 赖寿莲 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第1期33-38,共6页
In this work,the effects of pH value of waste water and initial concentration of phosphorus on dephosphorization materials were investigated.The materials were prepared by shaping,sintering and hydrothermal reshaping ... In this work,the effects of pH value of waste water and initial concentration of phosphorus on dephosphorization materials were investigated.The materials were prepared by shaping,sintering and hydrothermal reshaping oyster shell and silica micro-powder.Different concentrations of phosphorus-contained waste water were simulated with potassium dihydrogen phosphate solution,the effect of dephosphorization was tested with phosphomolybdenum blue spectrophotometer method,and the crystal phase and microstructure of materials were characterized by XRD and SEM methods. It was indicated that dephosphorization was completed in 6 h when the initial phosphorus concentration in waste water was lower than 15 mg/L, and the dephosphorization time prolonged as the increase of phosphorus concentration. It was observed that the pH value of waste water influenced dephosphorization significantly, and neutral subalkalic environment favored dephosphorization. When the pH value was 11, the efficiency of dephosphozation was the greatest. For waste water with an initial concentration of 20 mg/L, the dephosphozation rate is close to 100% in8 h. 展开更多
关键词 oyster shell silica micro-powder hydrothermal reaction waste water dephosphorization materials environmental-friendly material
下载PDF
Effects of copper content on the shell characteristics of hollow steel spheres manufactured using an advanced powder metallurgy technique
6
作者 Hamid Sazegaran Ali-Reza Kiani-Rashid Jalil Vahdati Khaki 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第4期434-441,共8页
Metallic hollow spheres are used as base materials in the manufacture of hollow sphere structures and metallic foams. In this study, steel hollow spheres were successfully manufactured using an advanced powder metallu... Metallic hollow spheres are used as base materials in the manufacture of hollow sphere structures and metallic foams. In this study, steel hollow spheres were successfully manufactured using an advanced powder metallurgy technique. The spheres' shells were characterized by optical microscopy in conjunction with microstructural image analysis software, scanning electron microscopy(SEM), energy-dispersive X-ray spectroscopy(EDX), and X-ray diffraction(XRD). The microscopic evaluations revealed that the shells consist of sintered iron powder, sintered copper powder, sodium silicate, and porosity regions. In addition, the effects of copper content on various parameters such as shell defects, microcracks, thickness, and porosities were investigated. The results indicated that increasing the copper content results in decreases in the surface fraction of shell porosities and the number of microcracks and an increase in shell thickness. 展开更多
关键词 steel hollow spheres powder metallurgy copper content shell characteristics
下载PDF
Deep drawing of cup shell by powder cavity flexible forming technology
7
作者 薛亚红 陈科 +1 位作者 范存杰 骆俊廷 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第4期766-772,共7页
A forming method named powder cavity flexible forming was proposed. It is a forming technology which uses powder medium instead of rigid punch or die to form sheet metals. Cup shells were successfully obtained by this... A forming method named powder cavity flexible forming was proposed. It is a forming technology which uses powder medium instead of rigid punch or die to form sheet metals. Cup shells were successfully obtained by this technology. The theoretical calculation equation of forming load was obtained through mechanical analysis and the stress state in cup shells was analyzed by finite element simulation. The results show that powder cavity flexible forming technology can improve the forming limit of sheet metal. Compared with rigid die forming process, the thickness reduction in the punch fillet area significantly decreases and the drawing ratio increases from 1.8 to 2.2. The thinning compressive stress in the bottom of cup shell emerges, which makes the bottom of the cup shell in three-dimensional stress state and the stress in punch fillet region decrease due to powder reaction force, which can effectively inhibit the sever thinning of the sheet and prevent the generation of fracture defects. 展开更多
关键词 cup shell powder cavity flexible forming drawing finite element simulation
下载PDF
Buckling analysis of embedded graphene oxide powder-reinforced nanocomposite shells
8
作者 Farzad Ebrahimi Pendar Hafezi Ali Dabbagh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期226-233,共8页
In this study,the buckling analysis of a Graphene oxide powder reinforced(GOPR)nanocomposite shell is investigated.The effective material properties of the nanocomposite are estimated through Halpin-Tsai micromechanic... In this study,the buckling analysis of a Graphene oxide powder reinforced(GOPR)nanocomposite shell is investigated.The effective material properties of the nanocomposite are estimated through Halpin-Tsai micromechanical scheme.Three distribution types of GOPs are considered,namely uniform,X and O.Also,a first-order shear deformation shell theory is incorporated with the principle of virtual work to derive the governing differential equations of the problem.The governing equations are solved via Galerkin’s method,which is a powerful analytical method for static and dynamic problems.Comparison study is performed to verify the present formulation with those of previous data.New results for the buckling load of GOPR nanocomposite shells are presented regarding for different values of circumferential wave number.Besides,the influences of weight fraction of nanofillers,length and radius to thickness ratios and elastic foundation on the critical buckling loads of GOP-reinforced nanocomposite shells are explored. 展开更多
关键词 BUCKLING Graphene oxide powder(GOP) Nanocomposite First-order shell theory
下载PDF
Preparation of Multifunctional β-hemihydrate Gypsum using Oyster Shell Powder as the Partial Replacement of Ag/TiO2 Particle
9
作者 万璐 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第6期1073-1080,共8页
This work aimed to use oyster shell powder (OSP) as the partial replacement of Ag/TiO2 particle to obtain multifunctional β-hemihydrate gypsum.Thus,the β-hemihydrate gypsum was mixed with different contents of OSP a... This work aimed to use oyster shell powder (OSP) as the partial replacement of Ag/TiO2 particle to obtain multifunctional β-hemihydrate gypsum.Thus,the β-hemihydrate gypsum was mixed with different contents of OSP and Ag/TiO2 particle.Antibacterial and MB removal experiments were conducted to assess the antibacterial characteristic and photocatalytic activity of β-hemihydrate gypsum with Ag/TiO2 particle and OSP.Besides,the formaldehyde degradation test was carried out to evaluate its formaldehyde removal ratio.Moreover,their setting times,compressive and flexural strengths at 1,3,and 28 days were comparatively analyzed.The experimental results prove that the composite use of OSP and Ag/TiO2 particle provide feasible multifunction for the β-hemihydrate gypsum.They can further improve the bactericidal rates and exhibit extra MB removal ratios compared with the gypsum plasters with single Ag/TiO2 particle.Besides,they can increase the formaldehyde degradation ratios,and this promotion is related to the introduction of Ag/TiO2 particle.However,OSP delays the initial setting time but promotes the final setting time of β-hemihydrate gypsum,and Ag/TiO2 particle hardly affects the setting times.Furthermore,OSP reduces the strengths of plasters at 1,3,and 28 days.But in general,the composite addition of OSP and Ag/TiO2 particle increase the compressive and flexural strengths of gypsum plasters at 1,3,and 28 days.These results provide theoretical guidance for the recycling of OSP and the preparation of gypsum-based products with antibacterial and formaldehyde degradation capabilities. 展开更多
关键词 oyster shell powder Ag/TiO2 particle β-hemihydrate gypsum bactericidal rate setting times
下载PDF
The Effects of Filler Contents and Particle Sizes on the Mechanical and End-Use Properties of Snail Shell Powder Filled Polypropylene
10
作者 Genevive C. Onuegbu Isaac O. Igwe 《Materials Sciences and Applications》 2011年第7期810-816,共7页
Polypropylene composites of snail shell powder were prepared at filler contents, 0 to 40 wt%. The particle sizes of the snail shell powder investigated were 0.150, 0.30, and 0.42 μm. Talc, of particle size, 0.150 μm... Polypropylene composites of snail shell powder were prepared at filler contents, 0 to 40 wt%. The particle sizes of the snail shell powder investigated were 0.150, 0.30, and 0.42 μm. Talc, of particle size, 0.150 μm was used as the reference filler. The polypropylene composites were prepared in an injection moulding machine and the resulting composites were extruded as sheets. Some mechanical and end-use properties of the prepared composites were determined. Results showed that the snail shell powder improved the tensile modulus, flexural strength, and impact strength of polypropylene and these properties increased with increases in the filler content and decreases in the filler particle size. The elongation at break of the composites was however observed to decrease with increases in the filler content, and particle size. The elongation at break of talc filled polypropylene was zero, an indication of the brittle nature of polypropylene composites of talc. The hardness, water sorption (24-hr) and specific gravity of the composites were found to increase with increases in the filler content, and decreases in the filler particle size. The level of water absorbed by snail shell powder composites of polypropylene is considerably higher than that of talc filled polypropylene. The flame retardant properties of the prepared composites were however found to decrease with increases in the filler content, and particle size. Generally, snail shell powder was found to show greater property improvement over talc in the prepared composites. 展开更多
关键词 FILLER Particle Size POLYPROPYLENE SNAIL shell powder Composite
下载PDF
Effect of Groundnut Shell Powder on the Mechanical Properties of Recycled Polyethylene and Its Biodegradability
11
作者 Mohammed Awwalu Usman Ibrahim Momohjimoh Abdulahi S. B. Gimba 《Journal of Minerals and Materials Characterization and Engineering》 2016年第3期228-240,共13页
Natural fiber reinforced composites have gained considerable attention particularly in the manufacturing industry owing to their light weight, corrosion resistance, abundance, and biodegradability. In this work, alkal... Natural fiber reinforced composites have gained considerable attention particularly in the manufacturing industry owing to their light weight, corrosion resistance, abundance, and biodegradability. In this work, alkaline treated and untreated groundnut shell powder (GSP) was used to reinforce recycled polyethylene to produce GSP-recycled polyethylene composites with improved mechanical properties and biodegradability. GSP with particle sizes of 0 - 300 μm and 300 - 600 μm was used in different proportions: 5%, 10%, 15%, 20%, 25%, and 30% wt. The fiber was immersed for 5 hours in a 10 wt% NaOH solution. Tensile and hardness test data showed an improvement in mechanical properties of the treated fiber composites. Results of water absorption test also showed that treated GSP-recycled polyethylene composites had a lower rate of water absorption than the untreated GSP-recycled polyethylene composites. Through Fourier transform infrared spectroscopy, disappearance of characteristics peaks of hemicellulose and lignin was observed. Growth of fungi on the fiber-reinforced composites was observed, which was evidence that GSP-recycled polyethylene composite was biodegradable. Finally, SEM micrographs showed uniform distribution of treated fibers in the polymer matrix;this explained the observed improvement in the mechanical properties of treated GSP-recycled polyethylene composites. 展开更多
关键词 Groundnut shell powder Fibers Recycled Polyethylene COMPOSITES Mechanical Properties BIODEGRADABILITY
下载PDF
Preparation of Magnesia Insulation Materials by Walnut Shell Powder Impregnated with Silica Sol
12
作者 JIAO Changfa LI Guohua KANG Chi 《China's Refractories》 CAS 2022年第3期34-37,共4页
In order to reduce the thermal energy loss of high temperature kilns and furnaces and lower the surface temperature of the kiln body,magnesia insulation materials were prepared using self-made magnesia porous aggregat... In order to reduce the thermal energy loss of high temperature kilns and furnaces and lower the surface temperature of the kiln body,magnesia insulation materials were prepared using self-made magnesia porous aggregates(using high purity magnesia powder as starting material and potassium oleate as the foaming agent),middle grade magnesia powder,calcium aluminate cement,and SiO_(2) micropowder as starting materials,introducing walnut shell powder impregnated with silica sol(short for Sws)as a pore-forming agent.The effects of the Sws addition(0,10%,15%,and 20%,by mass)and the sintering temperature(1300,1350,1400,and 1480℃)on the properties of magnesia insulation materials were studied.The results show that(1)for the specimens fired at 1480℃,when the Sws addition is 10%,the cold compressive strength is 22 MPa;when the Sws addition is 20%,the thermal conductivity is 0.368 W·m^(-1)·K^(-1)(350℃);(2)nano-silica in the silica sol reacts with MgO in the matrix to form forsterite,which encapsulates the pores volatilized from the walnut shell powder and forms closed pores. 展开更多
关键词 foaming method ignition loss method walnut shell powder impregnated with silica sol magnesia porous aggregates magnesia insulation materials
下载PDF
Preparation of Core-shell Cu-Ag Bimetallic Powder via Electroless Coating
13
作者 徐锐 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第4期637-639,共3页
A novel method of electroless silver coating on copper powders was reported, in which hydrazine was used as the reducing agent, and had some advantages such was used as inhibiting the substitution reaction and reducin... A novel method of electroless silver coating on copper powders was reported, in which hydrazine was used as the reducing agent, and had some advantages such was used as inhibiting the substitution reaction and reducing consumption of copper powders. In the processes of sensitization and activation, AgNO3 replaces the conventional PdCl2, which solves the impurity of bath. Oxide film on the surface of copper powders was tested by chemical analysis. Ag element tested by XRD and XRF is in the form of Ago and exists on the surface of copper powders, which acts as catalyzer in reduction reaction. Morphology and composition of the coating were characterized by SEM and XRD respectively. 展开更多
关键词 CORE-shell bimetallic powders electroless coating
下载PDF
Preparation of Ni/C core-shell composite powders by electroless plating method
14
作者 张海军 刘云 +1 位作者 贾全利 贾晓林 《中国有色金属学会会刊:英文版》 CSCD 2007年第A02期1144-1147,共4页
Ni/C core-shell composite powders were prepared by electroless nickel-plating. The effects of concentration of NiSO4,bathing temperature,ratio of hydrazine hydrate to NiSO4,pH of the solution,amounts of complexing rea... Ni/C core-shell composite powders were prepared by electroless nickel-plating. The effects of concentration of NiSO4,bathing temperature,ratio of hydrazine hydrate to NiSO4,pH of the solution,amounts of complexing reagent and surfactant,bath load of activated carbon and reaction time,and so on,on the preparation of Ni/C core-shell composite powders were studied. The results show that the principal factors for Ni/C composite powders preparation are bathing temperature,ratio of hydrazine hydrate to NiSO4 and pH of the solution. The optimum conditions are plating at 90 ℃ with pH10.7 and molar ratio of N2H4·H2O to Ni2+of 3.0. The plated nickel powders are observed to be sphere-like in morphology with size about 100 nm. The maximum dielectric loss of Ni/C core-shell composite powders is about 0.35,and its magnetic loss was low with value about 0 in 2-16 GHz. 展开更多
关键词 镍/碳复合粉末 制备方法 化学镀 金属表面防护
下载PDF
Biological oyster shell waste enhances polyphenylene sulfide composites and endows them with antibacterial properties
15
作者 Chi-Hui Tsou Rui Zeng +9 位作者 Neng Wan Manuel Reyes De Guzman Xue-Fei Hu Tao Yang Chen Gao Xiaomei Wei Jia Yi Li Lan Rui-Tao Yang Ya-Li Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期118-131,共14页
To date,there is no research that deals with biological waste as fillers in polyphenylene sulfide(PPS).In this study,oyster shells were recycled and treated to prepare thermally-treated oyster shells(TOS),which were u... To date,there is no research that deals with biological waste as fillers in polyphenylene sulfide(PPS).In this study,oyster shells were recycled and treated to prepare thermally-treated oyster shells(TOS),which were used as PPS fillers to make new bio-based antibacterial composite materials.The effect of varying the content of TOS was studied by means of structure and performance characterization.PPS/TOS composites were demonstrated to have an antibacterial effect on the growth of E coli and S.aureus.Qualitative analysis showed that when the TOS content was≥30%and 40%,the composite materials had an apparent inhibition zone.Quantitative analysis showed that the antibacterial activity increased with the TOS content.Fourier transform infrared spectroscopy indicated the formation of hydrogen bonds between the molecular chains of TOS and PPS and the occurrence of a coordination reaction.At 10%TOS,the composite tensile strength reached a maximum value of 72.5 MPa,which is 9.65%higher than that of pure PPS.The trend of bending properties is the same as that of tensile properties,showing that the maximum property was reached for the composite with 10%TOS.At the same time,the crystallinity and contact angle were the highest,and the permeability coefficient was the lowest.The fatigue test results indicated that for the composite with 10%TOS,the tensile strength was 23%lower than static tensile strength,and the yield strength was 10%lower than the static yield strength.The results of the study showed that TOS not only could reduce the cost of PPS,but also could impart antibacterial properties and enhance the mechanical and,barrier properties,the thermostability,as well as the crystallinity. 展开更多
关键词 Oyster shell powder Polyphenylene sulfide(PPS) Antibacterial properties FILLER Composite material Fatigue
下载PDF
Preparation of Iron-Pillared Bentonite/Oyster Shell Composite and Phosphate Adsorption in Water
16
作者 Zhijian Zhou Jie Yan +6 位作者 Xinxiang Du Qiulin Xu Zijun Wu Jinlan Yang Xitong Fang Qiuling Zhong Qiaoguang Li 《Journal of Renewable Materials》 EI 2023年第9期3501-3515,共15页
Iron-pillared bentonite(FB)was prepared by Fe(III)modified bentonite,and then the composites(FB-OS)were prepared by iron-pillared bentonite and oyster shell powder.The composites were characterized by FTIR,SEM,TGA,and... Iron-pillared bentonite(FB)was prepared by Fe(III)modified bentonite,and then the composites(FB-OS)were prepared by iron-pillared bentonite and oyster shell powder.The composites were characterized by FTIR,SEM,TGA,and EDS,and the phosphorus removal test was carried out.The results showed that FB-OS contained a large amount of CaO.Its structure was compact,but there were gaps in it.The maximum bending stress and compressive strength were 43.7 N and 0.927 MPa,respectively.The phosphorus removal test showed that the phosphorus removal rate of FB-OS was more than 90%,and measured the maximum adsorption capacity was 48.31 mg/g.A large amount of spherical products were produced on the surface and inside of FB-OS after phos-phorus removal,it was speculated that spherical products were amorphous calcium phosphate in the paper.Ana-lysis indicated that there was chemical adsorption during phosphorus removal.The kinetic equation of phosphorus adsorption by FB-OS was qt=10:193t/1+2:574t (R^(2)=0.995).The adsorption rate was mainly controlled by outerfilm diffusion and intraparticle diffusion. 展开更多
关键词 Oyster shell powder iron-pillared bentonite composite material phosphorous removal
下载PDF
Disinfection Treatment of Heated Scallop-Shell Powder on Biofilm of <i>Escherichia coli</i>ATCC 25922 Surrogated for <i>E. coli</i>O157:H7
17
作者 Miki Kubo Yori Ohshima +2 位作者 Fumio Irie Mikio Kikuchi Jun Sawai 《Journal of Biomaterials and Nanobiotechnology》 2013年第4期10-19,共10页
The ability of heated scallop-shell powder (HSSP) to disinfect Escherichia coli ATCC 25922 biofilm was investigated. On account of its cryotolerance and cell surface characteristics, the E. coli strain is reportedly a... The ability of heated scallop-shell powder (HSSP) to disinfect Escherichia coli ATCC 25922 biofilm was investigated. On account of its cryotolerance and cell surface characteristics, the E. coli strain is reportedly a useful surrogate for E. coli O157: H7 in surface attachment studies. In this study, an E. coli ATCC 25922 biofilm was formed on a glass plate, and immersed in a slurry of HSSP. Following treatment, the disinfection ability of the HSSP toward the biofilm was non-destructively and quantitatively measured by conductimetric assay. The disinfection efficacy increased with HSSP concentration and treatment time. HSSP treatment (10 mg/mL, pH 12.5) for 20 min completely eliminated biofilm bioactivity (approximately 108 CFU/cm2 in non-treated biofilms). In contrast, treatment with NaOH solution at the same pH, and treatment with sodium hypochlorite (200 mg/mL) reduced the activity by approximately one to three log10. Fluorescence microscopy confirmed that no viable cells remained on the plate following HSSP treatment (10 mg/mL). Although alkaline and sodium hypochlorite treatments removed cells from the biofilm, under these treatments, many viable cells remained on the plate. To elucidate the mechanism of HSSP activity against E. coli ATCC 25922, the active oxygen generated from the HSSP slurry was examined by chemiluminescence analysis. The luminescence intensity increased with increasing concentration of HSSP slurry. The results suggested that, besides being alkaline, HSSP generates active oxygen species with sporicidal activity. Thus, HSSP treatment could also be effective for controlling biofilms of the toxic strain E. coli O157: H7, implicated in food poisoning. 展开更多
关键词 Scallop-shell powder BIOFILM Escherichia COLI Conductimetric Assay Fluorescence Microscopy Active Oxygen Alkali
下载PDF
改性剂对高密度聚乙烯复合材料的性能研究
18
作者 何风 徐淳 +2 位作者 屈超 黄坤 甘巧 《山东化工》 CAS 2024年第8期22-25,共4页
采用回收的牡蛎壳经高温煅烧改性后为增强填料,马来酸酐接枝聚乙烯(PE-g-MAH)为改性剂与高密度聚乙烯采用熔融共混法制备了纳米复合材料。使用电子万能拉力机、X射线衍射仪(XRD)和差示扫描量热仪(DSC)对复合材料的结构、形貌和结晶性能... 采用回收的牡蛎壳经高温煅烧改性后为增强填料,马来酸酐接枝聚乙烯(PE-g-MAH)为改性剂与高密度聚乙烯采用熔融共混法制备了纳米复合材料。使用电子万能拉力机、X射线衍射仪(XRD)和差示扫描量热仪(DSC)对复合材料的结构、形貌和结晶性能进行了表征。探究了改性剂以及牡蛎壳粉含量对高密度聚乙烯复合材料综合性能的影响。结果表明:煅烧后的牡蛎壳粉可以提升复合材料的力学性能,且改性剂可以很好改善牡蛎壳粉与高密度聚乙烯之间的相容性,当牡蛎壳粉的质量含量为1%时,复合材料的综合性能最好。 展开更多
关键词 牡蛎壳粉 高密度聚乙烯 熔融共混 复合材料
下载PDF
改性贝壳粉吸附处理重金属废水的应用研究进展
19
作者 张伟 王政 +3 位作者 舒金锴 汪爱河 林海 晏许超 《湖南城市学院学报(自然科学版)》 CAS 2024年第2期70-74,共5页
改性贝壳粉作为一种天然吸附材料,具有廉价易得、可重复利用等优点,可用于处理重金属废水。本文首先系统阐述了重金属废水的危害,简要概括了贝壳粉常见的改性方法,以及不同改性方法的作用原理;其次,分析了影响改性贝壳粉吸附效果的因素... 改性贝壳粉作为一种天然吸附材料,具有廉价易得、可重复利用等优点,可用于处理重金属废水。本文首先系统阐述了重金属废水的危害,简要概括了贝壳粉常见的改性方法,以及不同改性方法的作用原理;其次,分析了影响改性贝壳粉吸附效果的因素,并阐述了改性贝壳粉吸附处理重金属废水的机理;最后,总结了改性贝壳粉吸附处理重金属废水可能的发展趋势,并期望未来能够探索出更高效的改性方法和最适宜的反应条件。 展开更多
关键词 改性贝壳粉 吸附剂 重金属废水 研究进展
下载PDF
牡蛎壳粉对水产品废水中化学需氧量吸附特性的研究
20
作者 杨耐德 陈业锋 +2 位作者 姚清华 刘嘉琪 赵娟 《农产品加工》 2024年第5期1-4,共4页
采用废弃牡蛎壳粉热改性对水产品废水中化学需氧量(CODcr)进行吸附试验,研究了天然牡蛎壳粉、热改性400,850℃条件下牡蛎壳粉用量、温度、pH值、振荡时间对牡蛎壳粉吸附水产品废水中的CODcr影响。同时,以热改性850℃牡蛎壳粉为研究对象... 采用废弃牡蛎壳粉热改性对水产品废水中化学需氧量(CODcr)进行吸附试验,研究了天然牡蛎壳粉、热改性400,850℃条件下牡蛎壳粉用量、温度、pH值、振荡时间对牡蛎壳粉吸附水产品废水中的CODcr影响。同时,以热改性850℃牡蛎壳粉为研究对象进行正交试验。结果表明,牡蛎壳粉对CODcr的最佳吸附条件为牡蛎壳用量1.5 g,温度35℃,pH值8,振荡时间30 min。在此条件下,牡蛎壳粉对废水中CODcr的吸附率可达到72.52%。影响牡蛎壳粉对水产品废水中CODcr的吸附的因素依次是牡蛎壳粉用量、温度、pH值、振荡时间,热改性850℃牡蛎壳粉可用于水产品废水处理。 展开更多
关键词 牡蛎壳粉 吸附 水产品废水 CODCR
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部