期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
Tunable Super-Structured Fiber Bragg Gratings with Perfect Sequences Based on m-Sequence
1
作者 Joao S.Pereira Marco P.M.Ferreira Marko Gasparovic 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期358-363,共6页
Recently, a tunable fiber Bragg grating(FBG) was developed by using stress-responsive colloidal crystals. In this paper, we have simulated the application of these nanoparticles into the super-structured fiber Bragg g... Recently, a tunable fiber Bragg grating(FBG) was developed by using stress-responsive colloidal crystals. In this paper, we have simulated the application of these nanoparticles into the super-structured fiber Bragg grating(SSFBG) written with perfect sequences derived from a short maximal-length sequence. A tunable SSFBG will be available to overcome the prohibitive temperature variation of the optical codecs. Nevertheless,we presented a method to implement coherent time spreading optical code-division multiple-access(OCDMA) where a unique code(or perfect sequence) can be reused and mixed with different wavelengths to obtain a tunable wavelength-division multiplexing(WDM)system. In order to maximize the binary throughput, we have selected a unique short maximal-length sequence composed of 7 chips that can be tuned with 7 different optical wavelengths. We found thousands of different tunable combinations that presented power contrast ratios(P/C) higher than 12 dB. When a WDM-OCDMA system used 2 different combinations simultaneously, the perfect binary detection with error correction codes was achieved successfully. The tunable SSFBG with colloidal crystals will be a simple and good alternative choice for fiber-to-the-home(FTTH) communications. 展开更多
关键词 Optical code-division multiple-access(OCDMA) super-structured fiber Bragg grating(SSFBG) wavelength-division multiplexing OCDMA(WDM-OCDMA)
下载PDF
Recent progress on fabrication, spectroscopy properties, and device applications in Sn-doped CdS micro-nano structures
2
作者 Bo Cao Ye Tian +8 位作者 Huan Fei Wen Hao Guo Xiaoyu Wu Liangjie Li Zhenrong Zhang Lai Liu Qiang Zhu Jun Tang Jun Liu 《Journal of Semiconductors》 EI CAS CSCD 2024年第9期7-27,共21页
One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including ... One-dimensional semiconductor materials possess excellent photoelectric properties and potential for the construction of integrated nanodevices. Among them, Sn-doped CdS has different micro-nano structures, including nanoribbons,nanowires, comb-like structures, and superlattices, with rich optical microcavity modes, excellent optical properties, and a wide range of application fields. This article reviews the research progress of various micrometer structures of Sn-doped CdS, systematically elaborates the effects of different growth conditions on the preparation of Sn-doped CdS micro-nano structures, as well as the spectral characteristics of these structures and their potential applications in certain fields. With the continuous progress of nanotechnology, it is expected that Sn-doped CdS micro-nano structures will achieve more breakthroughs in the field of optoelectronics and form cross-integration with other fields, jointly promoting scientific, technological, and social development. 展开更多
关键词 Sn-doped CdS micro-nano structure SUPERLATTICES optical microcavity
下载PDF
Effect of brazing temperature on microstructure and tensile strength ofγ-TiAl joint vacuum brazed with micro-nano Ti−Cu−Ni−Nb−Al−Hf filler
3
作者 Li LI Yu-tong CHEN +3 位作者 Lei-xin YUAN Fen LUO Zhi-xue FENG Xiao-qiang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2563-2574,共12页
A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the rel... A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the relationships among brazing temperature,interfacial microstructure and joint strength were emphatically investigated.Results show that the TiAl joints brazed at 1160 and 1180℃ possess three interfacial layers and mainly consist of α_(2)-Ti_(3)Al,τ_(3)-Al_(3)NiTi_(2) and Ti_(2)Ni,but the brazing seams are no longer layered and Ti_(2)Ni is completely replaced by the uniformly distributed τ_(3)-Al_(3)NiTi_(2) at 1200 and 1220℃ due to the destruction of α_(2)-Ti_(3)Al barrier layer.This transformation at 1200℃ obviously improves the tensile strength of the joint and obtains a maximum of 343 MPa.Notably,the outward diffusion of Al atoms from the dissolution of TiAl substrate dominates the microstructure evolution and tensile strength of the TiAl joint at different brazing temperatures. 展开更多
关键词 γ-TiAl alloy micro-nano filler vacuum brazing interfacial microstructure tensile strength
下载PDF
Effect of Micro-electrolysis and Micro-nano Bubbles Coupled with Peroxymonosulfate Treatment of Rural Domestic Sewage
4
作者 Peng ZHOU Yixin XU +3 位作者 Dongmei CHEN Cheng WU Xiaosi LEI Li FENG 《Meteorological and Environmental Research》 2024年第4期54-57,共4页
With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combine... With the continuous deepening of rural revitalization strategy and the increasingly strict sewage discharge standards,rural domestic sewage treatment technology is facing higher challenges and requirements.The combined process of micro-electrolysis+micro-nano bubbles coupled with peroxymonosulfate was constructed in this study,and the treatment effect and application value of this technology were explored with the actual rural domestic sewage as the treatment object.The experimental results showed that under the conditions of HRT of 120 min,PMS dosage of 0.15 mmol/L,pH=7,MBs air intake of 15 ml/min,current intensity of 15 A,and Fe/C mass ratio of 1:1,the removal rates of COD,ammonia nitrogen and total phosphorus can reach 88.55%,77.18%and 74.67%,respectively.Under the condition that the pH value of sewage was not adjusted,the non-biochemical simultaneous decarbonization,denitrification and phosphorus removal of rural domestic sewage can be achieved by micro-electrolysis and micro-nano bubbles coupled with peroxymonosulfate.The concentrations of effluent COD,ammonia nitrogen and total phosphorus met the requirements of the first level standard of the Discharge Standard of Water Pollutants for Rural Domestic Sewage Treatment Facilities(DB45T2413-2021).And the comprehensive operating cost was about 1.15 yuan/m 3. 展开更多
关键词 Integrated equipment Rural domestic sewage micro-nano bubbles PEROXYMONOSULFATE MICRO-ELECTROLYSIS
下载PDF
Advanced Functional Electromagnetic Shielding Materials:A Review Based on Micro‑Nano Structure Interface Control of Biomass Cell Walls
5
作者 Yang Shi Mingjun Wu +14 位作者 Shengbo Ge Jianzhang Li Anoud Saud Alshammari Jing Luo Mohammed A.Amin Hua Qiu Jinxuan Jiang Yazeed M.Asiri Runzhou Huang Hua Hou Zeinhom M.El‑Bahy Zhanhu Guo Chong Jia Kaimeng Xu Xiangmeng Chen 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期98-134,共37页
Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and... Research efforts on electromagnetic interference(EMI)shielding materials have begun to converge on green and sustainable biomass materials.These materials offer numerous advantages such as being lightweight,porous,and hierarchical.Due to their porous nature,interfacial compatibility,and electrical conductivity,biomass materials hold significant potential as EMI shielding materials.Despite concerted efforts on the EMI shielding of biomass materials have been reported,this research area is still relatively new compared to traditional EMI shielding materials.In particular,a more comprehensive study and summary of the factors influencing biomass EMI shielding materials including the pore structure adjustment,preparation process,and micro-control would be valuable.The preparation methods and characteristics of wood,bamboo,cellulose and lignin in EMI shielding field are critically discussed in this paper,and similar biomass EMI materials are summarized and analyzed.The composite methods and fillers of various biomass materials were reviewed.this paper also highlights the mechanism of EMI shielding as well as existing prospects and challenges for development trends in this field. 展开更多
关键词 Biomass materials Electromagnetic interference shielding micro-nano structure interface control CONDUCTIVITY
下载PDF
Micro-nanostructural designs of bifunctional electrocatalysts for metal-air batteries 被引量:8
6
作者 Fang Shi Xuefeng Zhu Weishen Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期390-403,共14页
Water-based rechargeable metal-air batteries play an important role in the storage and conversion of renewable electric energy.However,the sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution re... Water-based rechargeable metal-air batteries play an important role in the storage and conversion of renewable electric energy.However,the sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)have limited the practical application of rechargeable metal-air batteries.Most of reviews were focused on single functional electrocatalysts while few on bifunctional electrocatalysts.It is indispensable but challenging to design a bifunctional electrocatalyst that is active and stable to the two reactions.Recently,attempts to develop high active bifunctional electrocatalysts for both ORR and OER increase rapidly.Much work is focused on the micro-nano design of advanced structures to improve the performance of bifunctional electrocatalyst.Transition-metal materials,carbon materials and composite materials,and the methods developed to prepare micro-nano structures,such as electrochemical methods,chemical vapor deposition,hydrothermal methods and template methods are reported in literatures.Additionally,many strategies,such as adjustments of electronic structures,oxygen defects,metal-oxygen bonds,interfacial strain,nano composites,heteroatom doping etc.,have been used extensively to design bifunctional electrocatalysts.To well understand the achievements in the recent literatures,this review focuses on the micro-nano structural design of materials,and the related methods and strategies are classed into two groups for the improvement of intrinsic and apparent activities.The fine adjustment of nano structures and an in-depth understanding of the reaction mechanism are also discussed briefly. 展开更多
关键词 Oxygen reduction reaction Oxygen evolution reaction Rechargeable metal-air batteries Bifunctional electrocatalysts micro-nano structure
下载PDF
Adsorption of phenol from aqueous solution by a hierarchical micro-nano porous carbon material 被引量:4
7
作者 Liu Chengbao Chen Zhigang +5 位作者 Ni Chaoying Chen Feng Gu Cheng Cao Yu Wu Zhengying Li Ping 《Rare Metals》 SCIE EI CAS CSCD 2012年第6期582-589,共8页
A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidificatio... A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with the latter deposited on the interior and the exterior surfaces of the EG pores. The thickness of the activated carbon layer is calculated to be about one hundred nanometers and is further confirmed by scanning electron microscope (SEM) and transmission election microscope (TEM). A maximum static phenol adsorption of 241.2 mg·g-1 was obtained by using MNC, slightly higher than that of 220.4 mg·g-1 by using commercial activated carbon (CAC). The phenol adsorption kinetics were investigated and the data fitted well to a pseudo-second-order model. Also, an intra-particle diffusion mechanism was proposed. Furthermore, it is found that the dynamic adsorption capacity of MNC is nearly three times that of CAC. The results suggest that the MNC is a more efficient adsorbent than CAC for the removal of phenol from aqueous solution. 展开更多
关键词 micro-nano porous carbon materials expanded graphite activated carbon phenol adsorption KINETICS
下载PDF
Superamphiphobic, light-trapping FeSe2 particles with a micro-nano hierarchical structure obtained by an improved solvothermal method 被引量:1
8
作者 郁菁 王会杰 +1 位作者 邵伟佳 许小亮 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第1期336-340,共5页
Wettability and the light-trapping effect of FeSe2 particles with a micro-nano hierarchical structure have been inves- tigated. Particles are synthesized by an improved solvothermal method, wherein hexadecyl trimetbyl... Wettability and the light-trapping effect of FeSe2 particles with a micro-nano hierarchical structure have been inves- tigated. Particles are synthesized by an improved solvothermal method, wherein hexadecyl trimetbyl ammonium bromide (CTAB) is employed as a surfactant. After modifying the particles with heptadecafluorodecyltrimethoxy-silane (HTMS), we find that the water contact angle (WCA) of the FeSe2 particles increases by 6.1~ and the water sliding angle (WSA) decreases by 2.5~ respectively, and the diffuse reflectivity decreases 29.4% compared with similar FeSe2 particles synthe- sized by the conventional method. The growth process of the particles is analyzed and a growth scenario is given. Upon altering the PH values of the water, we observe that the superhydrophobic property is maintained quite consistently across a wide PH range of 1-14. Moreover, the modified particles were also found to be superoleophobic. To the best of our knowledge, there is no systematic research on the wettability of FeSe2 particles, so our research provides a reference for other researchers. 展开更多
关键词 FeSe2 SUPERHYDROPHOBIC micro-nano hierarchical structure light-trapping
下载PDF
Boosted Storage Kinetics in Thick Hierarchical Micro-Nano Carbon Architectures for High Areal Capacity Li-Ion Batteries 被引量:1
9
作者 Yang Wu Ting Ouyang +6 位作者 Tuzhi Xiong Zhao Jiang Yuwen Hu Jianqiu Deng Zhongmin Wang Yongchao Huang M.-Sadeeq(Jie Tang)Balogun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第4期1251-1259,共9页
A practical and effective approach to increase the energy storage capacity of lithium ion batteries(LIBs)is to boost their areal capacity.Developing thick electrodes is one of the most crucial ways to achieve high are... A practical and effective approach to increase the energy storage capacity of lithium ion batteries(LIBs)is to boost their areal capacity.Developing thick electrodes is one of the most crucial ways to achieve high areal capacity but limited by sluggish ion/electron transport,poor mechanical stability,and high-cost manufacturing strategies.Here we address these constraints by engineering a unique hierarchical-networked 10 mm thick all-carbon electrode,providing a scalable strategy to produce high areal capacity LIB electrodes.The hierarchical-networked structure utilizes micrometer-sized carbon fibers(MCFs)as building blocks,nano-sized carbon nanotubes(CNTs)as good continuous network with excellent electrical conductivity,and pyrolytic carbon as the binder and active material with excellent storage capacity.The combination of the above features endows our HNT-MCF/CNT/PC electrode with excellent performance including high reversible capacity of 15.44 mAh cm^(-2) at 2.0 mA cm^(-2) and exhibits excellent rate capability of 2.50 mAh cm^(-2) under 10.0 mA cm^(-2) current density.The Li-ion storage mechanism in HNT-MCF/CNT/PC involves dual-storage mechanism including intercalation and surface adsorption(pseudocapacitance)confirmed by the cyclic voltammetry and symmetric cell analysis.This work provides insights into the construction of high mechanical stability thick electrode for the next generation high areal capacity LIBs and beyond. 展开更多
关键词 dual storage mechanism high-areal-capacity micro-nano carbon architecture rapid kinetics and high mechanical stability thick electrode
下载PDF
Investigation on Surface Plasmon Polaritons and Localized Surface Plasmon Production Mechanism in Micro-Nano Structures 被引量:1
10
作者 Ling-Xi Hu Min Hu Sheng-Gang Liu 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第1期20-29,共10页
The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons gr... The simulation mechanism of surface plasmon polaritons(SPPs)and localized surface plasmon(LSP)in different structures was studied,including the Au reflection grating(Au grating),Au substrate with dielectric ribbons grating(Au substrate grating),and pure electric conductor(PEC)substrate with Au ribbons grating(Au ribbons grating).And the characteristics of the Smith-Purcell radiation in these structures were presented.Simulation results show that SPPs are excited on the bottom surface of Au substrate grating grooves and LSP is stimulated on the upper surface both of Au ribbons grating grooves and Au grating grooves.Owing to the irreconcilable contradiction between optimizing the grating diffraction radiation efficiency and optimizing the SPPs excitation efficiency in the Au substrate grating,only 40-times enhancement of the radiation intensity was obtained by excited SPPs.However,the LSP enhanced structure overcomes the above problem and gains much better radiation enhancement ability,with about 200-times enhancement obtained in the Au ribbons grating and more than 500-times enhancement obtained in the Au grating.The results presented here provide a way of developing miniature,integratable,tunable,high-power-density radiation sources from visible light to ultraviolet rays at room temperature. 展开更多
关键词 Coherent radiation high-power radiation localized surface plasmon(LSP) micro-nano structure Smith-Purcell radiation surface plasmon polaritons(SPPs)
下载PDF
ZnO micro-nano composite hydrophobic film prepared by the three-step method
11
作者 马恺 李华 +3 位作者 张晗 许小亮 公茂刚 杨周 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第5期1942-1946,共5页
The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step meth... The hydrophobicity of the lotus leaf is mainly due to its surface micro-nano composite structure. In order to mimic the lotus structure, ZnO micro-nano composite hydrophobic films were prepared via the three-step method. On thin buffer films of SiO2, which were first fabricated on glass substrates by the so,gel dip-coating method, a ZnO seed layer was deposited via RF magnetron sputtering. Then two different ZnO films, micro-nano and micro-only flowerlike structures, were grown by the hydrothermal method. The prepared films have different hydrophobic properties after surface modification. The structures of the obtained ZnO films were characterized using x-ray diffraction and field-emission scanning electron microscopy. A conclusion that a micro-nano composite structure is more beneficial to hydrophobicity than a micro-only structure was obtained through research into the effect of structure on hydrophobic properties. 展开更多
关键词 three-step method ZNO micro-nano structure hydrophobic film
下载PDF
Preparation of micro-nano hollow multiphase ceramic microspheres containing MnFe_2O_4 absorbent by self-reactive quenching method
12
作者 Hong-Fei Lou Jian-Jiang Wang +2 位作者 Zhi-Ning Zhao Xu-Dong Cai Yong-Shen Hou 《Rare Metals》 SCIE EI CAS CSCD 2013年第6期592-598,共7页
Fe–Fe2O3–MnO2–sucrose–epoxy resin and O2 as reaction system and feed gas,separately,were used to prepare micro-nano hollow multiphase ceramic microspheres containing MnFe2O4absorbent by self-reactive quenching met... Fe–Fe2O3–MnO2–sucrose–epoxy resin and O2 as reaction system and feed gas,separately,were used to prepare micro-nano hollow multiphase ceramic microspheres containing MnFe2O4absorbent by self-reactive quenching method which is integrated with flame jet,selfpropagating high-temperature synthesis(SHS),and rapidly solidification.The morphologies and phase compositions of hollow microspheres were studied by scanning electron microscope(SEM),transmission electron microscope(TEM),X-ray diffraction(XRD),and energy dispersive spectroscopy.The results show that the quenching products are regular spherical substantially with hollow structure,particle size is between few hundreds nanometers and 5 lm.Phase compositions are diphase of Fe3O4,Mn3O4,and MnFe2O4,and the spinel soft magnetic ferrite MnFe2O4 with microwave magnetic properties is in majority.Collisions with each other,burst as well as‘‘refinement’’of agglomerate powders in flame field may be the main reasons for the formation of micro-nano hollow multiphase ceramic microspheres containing MnFeOabsorbent. 展开更多
关键词 Self-reactive quenching method micro-nano hollow multiphase ceramic microspheres Collisions and burst Refinement
下载PDF
Potential application of functional micro-nano structures in petroleum
13
作者 LIU He JIN Xu +2 位作者 ZHOU Dekai YANG Qinghai LI Longqiu 《Petroleum Exploration and Development》 2018年第4期745-753,共9页
This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure d... This paper takes micro-nano motors and metamaterials as examples to introduce the basic concept and development of functional micro nano structures, and analyzes the application potential of the micro-nano structure design and manufacturing technology in the petroleum industry. The functional micro-nano structure is the structure and device with special functions prepared to achieve a specific goal. New functional micro-nano structures are classified into mobile type(e.g. micro-nano motors) and fixed type(e.g. metamaterials), and 3 D printing technology is a developed method of manufacturing. Combining the demand for exploration and development in oil and gas fields and the research status of intelligent micro-nano structures, we believe that there are 3 potential application directions:(1) The intelligent micro-nano structures represented by metamaterials and smart coatings can be applied to the oil recovery engineering technology and equipment to improve the stability and reliability of petroleum equipment.(2) The smart micro-nano robots represented by micro-motors and smart microspheres can be applied to the development of new materials for enhanced oil recovery, effectively improving the development efficiency of heavy oil, shale oil and other resources.(3) The intelligent structure manufacturing technology represented by 3 D printing technology can be applied to the field of microfluidics in reservoir fluids to guide the selection of mine flooding agents and improve the efficiency of mining. 展开更多
关键词 PETROLEUM industry micro-nano structures micro-nano motor METAMATERIALS 3D PRINTING application direction OIL production engineering OIL equipment enhanced OIL recovery
下载PDF
Synergistic Treatment of Low-concentration Organic Waste Gas by Micro-nano Bubble Coordinated with Peroxymonosulfate
14
作者 Peng ZHOU Yixin XU +1 位作者 Xiaosi LEI Mingjie WEI 《Meteorological and Environmental Research》 2023年第6期73-76,共4页
Continuous dynamic experiment was conducted for the treatment of low-concentration organic waste gas with xylene as a representative, using micro-nano bubble and peroxymonosulfate working in synergy. The degradation r... Continuous dynamic experiment was conducted for the treatment of low-concentration organic waste gas with xylene as a representative, using micro-nano bubble and peroxymonosulfate working in synergy. The degradation rule of xylene under different conditions such as the ORP value of the spray liquid, pH value of the spray liquid, liquid-gas ratio of the spray liquid, residence time of xylene, and initial concentration of xylene was investigated. The results showed that at a low concentration, the pH value of the spray liquid had little effect on the degradation rate of xylene. The degradation rate of xylene rose with the increase of the ORP value of the spray liquid, the liquid-gas ratio of the spray liquid, the residence time of xylene, and the initial concentration of xylene. 展开更多
关键词 micro-nano bubble PEROXYMONOSULFATE SYNERGY Low concentration Organic waste gas
下载PDF
Synthesis and electrochemical performance of micro-nano structured Li Fe1-xMnxPO4/C(0≤x≤0.05)cathode for lithium-ion batteries
15
作者 Chunyang Li Guojun Li Xiaomei Guan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期923-929,共7页
Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0... Micro-nano structured Li Fe(1-x)MnxPO4/C(0≤x≤0.05)cathodes were prepared by spray drying,followed by calcination at 700°C.The spherical Li Fe(1-x)MnxPO4/C(0≤x≤0.05)particles with the size of 0.5 to5.0μm are composed of lots of nanoparticles of 20 to 30 nm,and have the well-developed interconnected pore structure.In contrast,when Mn doping content is 3 mol%(x=0.03),the Li Fe(0.97)Mn(0.03)PO4/C demonstrates maximum specific surface area of 31.30 m^2/g,more uniform pore size and relatively better electrochemical performance.The initial discharge capacities are 161.59,157.04 and 153.13 m Ah/g at a discharge rate of 0.2,0.5 and 1 C,respectively.Meanwhile,the discharge capacity retentions are~100%after 120 cycles.The improved electrochemical performance should be attributed to higher specific surface,smaller polarization voltage,and a high Li~+diffusion rate due to the micro-nano porous structure and lattice expansion produced by Mn doping. 展开更多
关键词 Li Fe1-xMnxPO4/C Spray drying Electrochemical property micro-nano structure
下载PDF
Advances in memristor based artificial neuron fabrication-materials,models,and applications 被引量:1
16
作者 Jingyao Bian Zhiyong Liu +5 位作者 Ye Tao Zhongqiang Wang Xiaoning Zhao Ya Lin Haiyang Xu Yichun Liu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期27-50,共24页
Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and l... Spiking neural network(SNN),widely known as the third-generation neural network,has been frequently investigated due to its excellent spatiotemporal information processing capability,high biological plausibility,and low energy consumption characteristics.Analogous to the working mechanism of human brain,the SNN system transmits information through the spiking action of neurons.Therefore,artificial neurons are critical building blocks for constructing SNN in hardware.Memristors are drawing growing attention due to low consumption,high speed,and nonlinearity characteristics,which are recently introduced to mimic the functions of biological neurons.Researchers have proposed multifarious memristive materials including organic materials,inorganic materials,or even two-dimensional materials.Taking advantage of the unique electrical behavior of these materials,several neuron models are successfully implemented,such as Hodgkin–Huxley model,leaky integrate-and-fire model and integrate-and-fire model.In this review,the recent reports of artificial neurons based on memristive devices are discussed.In addition,we highlight the models and applications through combining artificial neuronal devices with sensors or other electronic devices.Finally,the future challenges and outlooks of memristor-based artificial neurons are discussed,and the development of hardware implementation of brain-like intelligence system based on SNN is also prospected. 展开更多
关键词 artificial neuron MEMRISTOR memristive materials neuron model micro-nano manufacturing spiking neural network
下载PDF
Modification of Nano-α-Al2O3 and Its Influence on the Surface Properties of Waterborne Polyurethane Resin Composite Passivation Films
17
作者 Jiankang Fu Changshuai Ma +2 位作者 Yameng Zhu Jing Yuan Qianfeng Zhang 《Journal of Materials Science and Chemical Engineering》 2024年第5期29-48,共20页
Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub&... Silane coupling agent KH560 was used to modify the surface of nano-α-Al<sub>2</sub>O<sub>3</sub> in ethanol-aqueous solution with different proportions. The particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> was determined by nano-particle size analyzer, and the effects of nano-α-Al<sub>2</sub>O<sub>3</sub> content, ethanol-aqueous solution ratio and KH560 dosage on the dispersion and particle size of nano-α-Al<sub>2</sub>O<sub>3</sub> were investigated. The material structure before and after modification was determined by Fourier transform infrared spectroscopy (FTIR). Aqueous polyurethane resin and inorganic components are combined with modified nano-α-Al<sub>2</sub>O<sub>3</sub> dispersion to form chromium-free passivation solution. The solution is coated on the galvanized sheet, the adhesion and surface hardness are tested, the bonding strength of the coating and the surface hardness of the substrate are discussed. The corrosion resistance and surface morphology of the matrix were investigated by electrochemical test, neutral salt spray test and scanning electron microscope test. The chromium-free passivation film formed after the modification of nano-α-Al<sub>2</sub>O<sub>3</sub> increases the surface hardness of galvanized sheet by about 85%. The corrosion resistance of the film is better than that of a single polyurethane film. The results show that the surface hardness and corrosion resistance of polyurethane resin composite passivation film are significantly improved by the introduction of nano-α-Al<sub>2</sub>O<sub>3</sub>. 展开更多
关键词 micro-nano α-Al2O3 Waterborne Polyurethane Resin Particle Size Surface Hardness Corrosion Resistance
下载PDF
Shale Gas Formation and Occurrence in China: An Overview of the Current Status and Future Potential 被引量:11
18
作者 ZOU Caineng YANG Zhi +10 位作者 PAN Songqi CHEN Yanyan LIN Senhu HUANG Jinliang WU Songtao DONG Dazhong WANG Shufang LIANG Feng SUN Shasha HUANG Yong WENG Dingwei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第4期1249-1283,共35页
Shale gas is one of the most promising unconventional resources both in China and abroad. It is known as a form of self-contained source-reservoir system with large and continuous dimensions. Through years of consider... Shale gas is one of the most promising unconventional resources both in China and abroad. It is known as a form of self-contained source-reservoir system with large and continuous dimensions. Through years of considerable exploration efforts, China has identified three large shale gas fields in the ruling, Changning and Weiyuan areas of the Sichuan Basin, and has announced more than 540 billion m3 of proven shale gas reserves in marine shale systems. The geological theories for shale gas development have progressed rapidly in China as well. For example, the new depositional patterns have been introduced for deciphering the paleogeography and sedimentary systems of the Wufeng shale and Longmaxi shale in the Sichuan Basin. The shale gas storage mechanism has been widely accepted as differing from conventional natural gas in that it is adsorbed on organic matter or a mineral surface or occurs as free gas trapped in pores and fractures of the shale. Significant advances in the techniques of microstructural characterization have provided new insights on how gas molecules are stored in micro- and nano-scale porous shales. Furthermore, newly-developed concepts and practices in the petroleum industry, such as hydraulic fracturing, microseismic monitoring and multiwell horizontal drilling, have made the production of this unevenly distributed but promising unconventional natural gas a reality. China has 10-36 trillion m3 of promising shale gas among the world's whole predicted technically recoverable reserves of 206.6 trillion m3. China is on the way to achieving its goal of an annual yield of 30-50 billion m3 by launching more trials within shale gas projects. 展开更多
关键词 shale gas organic-rich shale unconventional system fine-grained sediments micro-nano pores core area
下载PDF
The Geoscience Frontier of Gulong Shale Oil:Revealing the Role of Continental Shale from Oil Generation to Production 被引量:9
19
作者 Wenyuan He Rukai Zhu +9 位作者 Baowen Cui Shuichang Zhang Qian Meng Bin Bai Zihui Feng Zhengdong Lei Songtao Wu Kun He He Liu Longde Sun 《Engineering》 SCIE EI CAS CSCD 2023年第9期79-92,共14页
The clay mineral content of Daqing Gulong shale is in the range of about 35%–45%,with particle sizes less than 0.0039 mm.The horizontal fluidity of oil in Gulong shale is poor,with near-zero vertical flowability.As a... The clay mineral content of Daqing Gulong shale is in the range of about 35%–45%,with particle sizes less than 0.0039 mm.The horizontal fluidity of oil in Gulong shale is poor,with near-zero vertical flowability.As a result,Gulong shale has been considered to lack commercial value.In recent years,however,interdisciplinary research in geoscience,percolation mechanics,thermodynamics,and surface mechanics has demonstrated that Gulong shale oil has a high degree of maturity and a high residual hydrocarbon content.The expulsion efficiency of Gulong shale in the high mature stage is 32%–48%.Favorable storage spaces in Gulong shale include connecting pores and lamellar fractures developed between and within organic matter and clay mineral complexes.The shale oil mainly occurs in micro-and nano-pores,bedding fractures,and lamellar fractures,with a high gas–oil ratio and medium–high movable oil saturation.Gulong shale has the characteristics of high hardness,a high elastic modulus,and high fracture toughness.This study achieves breakthroughs in the exploration and development of Gulong shale,including the theories of hydrocarbon generation and accumulation,the technologies of mobility and fracturing,and recoverability.It confirms the major transition of Gulong shale from oil generation to oil production,which has extremely significant scientific value and application potential for China’s petroleum industry. 展开更多
关键词 Gulong shale Gulong shale oil micro-nano pores Lamellar fracture Continental oil production
下载PDF
Three-Dimensional Cu-Ni Composite Superamphiphobic Surface via Electrodeposition and Fluorosilane Modification 被引量:2
20
作者 Wei-yi Liu Meng-fan Luo +7 位作者 Fang Luo Yan Liu Yan-zong Zhang Fei Shen Xiao-hong Zhang Gang Yang Li-lin Wang Shi-huai Deng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第3期343-348,I0003,共7页
A superamphiphobic(SAP)surface was fabricated by electrodepositing Cu-Ni micro-nano particles on aluminum substrate and modifying via 1 H,1 H,2 H,2 Hperfluorodecyltrimethoxysilane.Scanning electron microscopy,X-ray di... A superamphiphobic(SAP)surface was fabricated by electrodepositing Cu-Ni micro-nano particles on aluminum substrate and modifying via 1 H,1 H,2 H,2 Hperfluorodecyltrimethoxysilane.Scanning electron microscopy,X-ray diffraction,energydispersive X-ray spectroscopy,and Fourier-transform infrared spectroscopy were employed to investigate the morphology and chemical composition.The results showed that the SAP surface had three-dimensional micro-nano structures and exhibited a maximum water contact angle of 160.0°,oil contact angle of 151.6°,a minimum water slide angle of 0°and oil slide angle of 9°.The mechanical strength and chemical stability of the SAP surface were tested further.The experimental results showed that the SAP surface presented excellent resistance to wear,prominent acid-resistance and alkali-resistance,self-cleaning and anti-fouling properties. 展开更多
关键词 Rough surface micro-nano structure Low surface energy SELF-CLEANING Wear resistance Chemical stability
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部