Layer-block tectonics (LBT) concept, with the core of pluralistic geodynamic outlook and multilayer-sliding tectonic outlook, is one of new keys to study 3-dimensional solid and its 4-dimensional evolution history o...Layer-block tectonics (LBT) concept, with the core of pluralistic geodynamic outlook and multilayer-sliding tectonic outlook, is one of new keys to study 3-dimensional solid and its 4-dimensional evolution history of global tectonic system controlled by global geodynamics system. The LBT concept is applied to study the lithospheric tectonics of the southern South China Sea (SCS). Based on the analysis of about 30 000 km of geophysical and geological data, some layer-blocks in the Nansha micro-plate can be divided as Nansha ultra-crustal layer-block, Zengmu crustal layer-block, Nanwei (Rifleman bank)-Andu (Ardasier bank) and Liyue (Reed bank) North Palawan crustal layer-blocks, Andu-Bisheng and Liyue-Banyue basemental layer-blocks. The basic characteristics of the basemental layer-blocks have been dicussed, and three intra-plate basin groups are identified. The intra-plate basins within Nansha micro-plate can be divided into three basin groups of Nanwei- Andu, Feixin-Nanhua, and Liyue-North Palawan based on the different geodynamics. In the light of pluralistic geodynamic concept, the upheaving force induced by the mid-crust plastic layer is proposed as the main dynamical force which causes the formation of the intra-plate basins within the Nansha micro-plate. Finally, models of a face-to-face dip-slip detachment of basemental layerblock and a unilateral dip-slip-detachment of basemental layer-block are put forward for the forming mechanisms of the Nanwei Andu and Liyue-North Palawan intra-plate basin groups, respectively.展开更多
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elas...The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.展开更多
In this study we describe an FEM-based methodology to solve the coupled fluid-structure problem due to squeeze film effects present in vibratory MEMS devices, such as resonators, gyroscopes, and acoustic transducers. ...In this study we describe an FEM-based methodology to solve the coupled fluid-structure problem due to squeeze film effects present in vibratory MEMS devices, such as resonators, gyroscopes, and acoustic transducers. The aforementioned devices often consist of a plate-like structure that vibrates normal to a fixed substrate, and is generally not perfectly vacuum packed. This results in a thin film of air being sandwiched between the moving plate and the fixed substrate, which behaves like a squeeze film offering both stiffness and damping. Typically, such structures are actuated electro-statically, necessitating the thin air gap for improving the efficiency of actuation and the sensitivity of detection. To accurately model these devices the squeeze film effect must be incorporated. Extensive literature is present on mod- eling squeeze film effects for rigid motion for both perforated as well as non-perforated plates. Studies which model the plate elasticity often use approximate mode shapes as input to the 2D Reynolds Equation. Recent works which try to solve the coupled fluid elasticity problem, report iterative FEM-based solution strategies for the 2D Reynolds Equation coupled with the 3D elasticity Equation. In this work we present a FEM-based single step solution for the coupled problem at hand, using only one type of element (27 node 3D brick). The structure is modeled with 27 node brick elements of which the lowest layer of nodes is also treated as the fluid domain (2D) and the integrals over fluid domain are evaluated for these nodes only. We also apply an electrostatic loading to our model by considering an equivalent electro-static pressure load on the top surface of the structure. Thus we solve the coupled 2D-fluid-3D-structure problem in a single step, using only one element type. The FEM results show good agreement with both existing analytical solutions and published experimental data.展开更多
A micro-plate magnetic chemiluminescence immunoassay was developed for rapid and high throughput detection of carcinoembryonic antigens (CEA) in human sera. This method was based on a sandwich immunoreaction of fluore...A micro-plate magnetic chemiluminescence immunoassay was developed for rapid and high throughput detection of carcinoembryonic antigens (CEA) in human sera. This method was based on a sandwich immunoreaction of fluorescein isothiocyanate (FITC)-labeled anti-CEA antibodies, CEA antigens, and horseradish peroxidase (HRP)-conjugated anti-CEA antibodies in mi- cro-plate. The immunomagnetic particles coated with anti-FITC antibodies were used as the solid phase for the immunoassay. The separation procedure was carried out by a magnetic plate adaptor and the luminol-hydrogen peroxide (H2O2)-HRP system was employed for the chemiluminescence detection. The proposed method combined the advantages of the micro-plate reactor and magnetic particle separation technology with the linear range of 5-250 ng mL·1. The detection limit of CEA was 0.61 ng mL·1. The coefficient of the variation was less than 7% and 13% for intra-assay and inter-assay precision, respectively. Compared with the commercial micro-plate chemiluminescent kit, the proposed method showed a good correlation.展开更多
This article studies the stability of a functionally graded clamped-clamped micro- plate subjected to hydrostatic and electrostatic pressures. Equilibrium positions of the micro-plate are determined and shown in the s...This article studies the stability of a functionally graded clamped-clamped micro- plate subjected to hydrostatic and electrostatic pressures. Equilibrium positions of the micro-plate are determined and shown in the state control space. To study the stability of the equilibrium positions, the motion trajectories are given for different initial conditions in the phase plane. Effects of the electrostatic and hydrostatic pressure changes on the deflection and stability of the micro-plate for some sample value of k are studied and values of the applied voltage and hydrostatic pressure leading system to unstable conditions by undergoing a saddle node and homoclinic bifurcations are determined.展开更多
基金The National Basic Research Program of China ("973") under contract Nos 2009CB2194 and 2007CB411700the Major Knowledge Innovation Programs of the Chinese Academy of Sciences under contract No. kzcx2-yw-203-01+2 种基金the National Natural Science Foundation of China of China under contract No. 40676039the National Program of Sustaining Science and Technology of China under contract No. 2006BAB19B02the Program of the Ministry of Land and Natural Resources of China under contract No. GT-YQ-QQ-2008-1-02
文摘Layer-block tectonics (LBT) concept, with the core of pluralistic geodynamic outlook and multilayer-sliding tectonic outlook, is one of new keys to study 3-dimensional solid and its 4-dimensional evolution history of global tectonic system controlled by global geodynamics system. The LBT concept is applied to study the lithospheric tectonics of the southern South China Sea (SCS). Based on the analysis of about 30 000 km of geophysical and geological data, some layer-blocks in the Nansha micro-plate can be divided as Nansha ultra-crustal layer-block, Zengmu crustal layer-block, Nanwei (Rifleman bank)-Andu (Ardasier bank) and Liyue (Reed bank) North Palawan crustal layer-blocks, Andu-Bisheng and Liyue-Banyue basemental layer-blocks. The basic characteristics of the basemental layer-blocks have been dicussed, and three intra-plate basin groups are identified. The intra-plate basins within Nansha micro-plate can be divided into three basin groups of Nanwei- Andu, Feixin-Nanhua, and Liyue-North Palawan based on the different geodynamics. In the light of pluralistic geodynamic concept, the upheaving force induced by the mid-crust plastic layer is proposed as the main dynamical force which causes the formation of the intra-plate basins within the Nansha micro-plate. Finally, models of a face-to-face dip-slip detachment of basemental layerblock and a unilateral dip-slip-detachment of basemental layer-block are put forward for the forming mechanisms of the Nanwei Andu and Liyue-North Palawan intra-plate basin groups, respectively.
基金supported by the Iranian Nanotechnology Development Committee and the University of Kashan(No.363452/10)
文摘The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress, the modified couple stress theory (MCST), and the nonlocal elasticity theories using the differential quadrature method (DQM) is presented. Main advantages of the MCST over the classical theory (CT) are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter. Based on the nonlinear von Karman assumption, the governing equations of equilibrium for the micro-classical plate consid- ering midplane displacements are derived based on the minimum principle of potential energy. Using the DQM, the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained. Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature. A parametric study is conducted to show the effects of the aspect ratio, the side-to-thickness ratio, Eringen's nonlocal parameter, the material length scale parameter, Young's modulus of the surface layer, the surface residual stress, the polymer matrix coefficients, and various boundary conditions on the dimensionless uniaxial, biaxial, and shear critical buckling loads. The results indicate that the critical buckling loads are strongly sensitive to Eringen's nonlocal parameter, the material length scale parameter, and the surface residual stress effects, while the effect of Young's modulus of the surface layer on the critical buckling load is negligible. Also, considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate. The results show that the critical biaxial buckling load increases with an increase in G12/E2 and vice versa for E1/E2. It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude. Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios, it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.
文摘In this study we describe an FEM-based methodology to solve the coupled fluid-structure problem due to squeeze film effects present in vibratory MEMS devices, such as resonators, gyroscopes, and acoustic transducers. The aforementioned devices often consist of a plate-like structure that vibrates normal to a fixed substrate, and is generally not perfectly vacuum packed. This results in a thin film of air being sandwiched between the moving plate and the fixed substrate, which behaves like a squeeze film offering both stiffness and damping. Typically, such structures are actuated electro-statically, necessitating the thin air gap for improving the efficiency of actuation and the sensitivity of detection. To accurately model these devices the squeeze film effect must be incorporated. Extensive literature is present on mod- eling squeeze film effects for rigid motion for both perforated as well as non-perforated plates. Studies which model the plate elasticity often use approximate mode shapes as input to the 2D Reynolds Equation. Recent works which try to solve the coupled fluid elasticity problem, report iterative FEM-based solution strategies for the 2D Reynolds Equation coupled with the 3D elasticity Equation. In this work we present a FEM-based single step solution for the coupled problem at hand, using only one type of element (27 node 3D brick). The structure is modeled with 27 node brick elements of which the lowest layer of nodes is also treated as the fluid domain (2D) and the integrals over fluid domain are evaluated for these nodes only. We also apply an electrostatic loading to our model by considering an equivalent electro-static pressure load on the top surface of the structure. Thus we solve the coupled 2D-fluid-3D-structure problem in a single step, using only one element type. The FEM results show good agreement with both existing analytical solutions and published experimental data.
基金support from the CAS Major Scientific Research and Equipment Development Projects (YZ-0632)the National Natural Science Founolation of China (Grant No. 20907060)+2 种基金the CAS Graduate Innovation Foundation (No. YXLW-3)the National key Technology R&D Program (Grant No. 2006BAF07B03-1-1)Shaanxi Province, China’s Scholarship Council (Grant No. 08JK482)
文摘A micro-plate magnetic chemiluminescence immunoassay was developed for rapid and high throughput detection of carcinoembryonic antigens (CEA) in human sera. This method was based on a sandwich immunoreaction of fluorescein isothiocyanate (FITC)-labeled anti-CEA antibodies, CEA antigens, and horseradish peroxidase (HRP)-conjugated anti-CEA antibodies in mi- cro-plate. The immunomagnetic particles coated with anti-FITC antibodies were used as the solid phase for the immunoassay. The separation procedure was carried out by a magnetic plate adaptor and the luminol-hydrogen peroxide (H2O2)-HRP system was employed for the chemiluminescence detection. The proposed method combined the advantages of the micro-plate reactor and magnetic particle separation technology with the linear range of 5-250 ng mL·1. The detection limit of CEA was 0.61 ng mL·1. The coefficient of the variation was less than 7% and 13% for intra-assay and inter-assay precision, respectively. Compared with the commercial micro-plate chemiluminescent kit, the proposed method showed a good correlation.
文摘This article studies the stability of a functionally graded clamped-clamped micro- plate subjected to hydrostatic and electrostatic pressures. Equilibrium positions of the micro-plate are determined and shown in the state control space. To study the stability of the equilibrium positions, the motion trajectories are given for different initial conditions in the phase plane. Effects of the electrostatic and hydrostatic pressure changes on the deflection and stability of the micro-plate for some sample value of k are studied and values of the applied voltage and hydrostatic pressure leading system to unstable conditions by undergoing a saddle node and homoclinic bifurcations are determined.