We sought to evaluate immediate and delayed micro-tensile bond strength of Panavia F2.0 and Multilink Sprint resin cement to superficial, deep and cervical dentin. Thirty-six freshly extracted non-carious human molars...We sought to evaluate immediate and delayed micro-tensile bond strength of Panavia F2.0 and Multilink Sprint resin cement to superficial, deep and cervical dentin. Thirty-six freshly extracted non-carious human molars were sectioned in the mesiodistal direction to expose three different dentin regions including superficial dentin (1 mm below the dentine-enamel junction), deep dentin (1 mm above the highest pulp horn) and cervical dentin (0.5 mm above the cemento-enamel junction and 0.5 mm below the dentine-enamel junction). Resin cements were applied on dentin surfaces and composite blocks were luted under constant seating pressure. Each group was divided into three subgroups according to time intervals. Specimens were sectioned to obtain sticks of 1 mm2 in diameter and subjected to microtensile bond strength testing at a cross head speed of 1 mrn/min. Both resin cements showed higher micro-tensile bond strength to superficial dentin than that to deep or cervical dentin (P 〈 0.001). Micro-ten- sile bond strengths of Panavia F2.0 were higher than those of Multilink Sprint at different dentin regions (P 〈 0.001). Immediate "micro-tensile bond strengths were higher than those of delayed micro-tensile bond strengths for both resin cements (P 〈 0.001). It was concluded that resin cements with different chemical formulations and applications yield significantly different micro-tensile bond strengths to different dentin regions.展开更多
Rock anchors are a common safety measure for stabilising large-scale infrastructure,such as bridge towers,retaining walls,rock slopes and windmills.There are four principal failure modes for rock anchors:(a)tensile fa...Rock anchors are a common safety measure for stabilising large-scale infrastructure,such as bridge towers,retaining walls,rock slopes and windmills.There are four principal failure modes for rock anchors:(a)tensile failure of the steel anchor,(b)anchor-grout interface failure,(c)grout-rock interface failure,and(d)rock mass uplift.Field tests were performed in a limestone quarry.These tests were designed to test failure modes B and C through pullout.In the tests of failure mode B,the shear stress on the anchor-grout interface is the largest at the top of the grout column and attenuates towards the distal end for small loads.The shear stress becomes uniformly distributed when the applied load is approximately 50%of the ultimate pullout load.The anchors designed to test failure mode C were installed with an endplate and had a higher toughness than the straight bar anchors.The shear stress on the grout-rock interface is the largest at the endplate and attenuates upward before slip starts along the interface.When the ultimate pullout load is reached,and the grout column starts to slip,the shear stress is approximately constant.The bond shear strength on the anchor-grout interface was approximately 20%of the uniaxial compressive strength of the grout,and the bond strength of the grout-rock interface was around 5%for that of the grout.The grout-rock interface is likely determined by whichever is weaker,the grout or the rock.展开更多
Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic st...Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.展开更多
In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets...In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets of in-situ direct shear tests were conducted on the basalt-concrete bond interface in the Baihetan dam area to investigate the shear strength characteristics of the basalt-concrete bonding interface.The bonding interface contains two states,i.e.,the bonding interface is not sheared,termed as se(symbolic meaning see Table 1);the bonding interface is sheared with rupture surface,termed as si.The effects of lithology,Joints structure,rock type grade and concrete compressive strength on the shear strength of the concrete-basalt contact surface were investigated.The test results show that the shear strength of the bonding interface(s_(e)&s_(i))of columnar jointed basalt with concrete is greater than that of the bonding interface(s_(e)&s_(i))of non-columnar jointed one with the same rock type grade.When the rock type grade isⅢ_(2),fcol is 1.22 times higher than fncol and ccol is 1.13 times greater than cncol.The shear strength parameters of the basalt-concrete bonding interface differ significantly for different lithologies.The cohesion of the bonding interface(s_(i))of cryptocrystalline basalt with concrete is 2.05 times higher than that of the bonding interface(s_(i))of breccia lava with concrete under the same rock type grade condition.Rock type grade has a large influence on the shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i)).cnol increases by 33%when the grade of rock type rises fromⅢ_(1)toⅡ_(1).the rock type grade has a greater effect on bonding interface(s_(i))cohesion than the coefficient of friction.When the rock type grade is reduced fromⅢ_(2)toⅢ_(1),f_(ncol)′increases by 2%and c_(ncol)′improves by 44%.The shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i))increases with the increase of the compressive strength of concrete.When concrete compressive strength rises from 22.2 to 27.6 MPa,the cohesion increases by 94%.展开更多
Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embed...Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embedded in concrete. Two kinds of conventional reinforcing rebars were also studied for comparison. Each rebar was embedded in a 150 mm concrete cube,with the embedded length being four times the rebar diameter. The experimental parameters were the rebar type,rebar component,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the bond strength of GFRP rebars was about 13%~35% lower than that of steel rebars. The bond strength and bond-slip behavior of the specially machined rebars varied with the rebar type,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Using the results,design recom-mendations were made concerning optimum rib geometries of GFRP ribbed rebars with superior bond-slip characteristics,which concluded that the optimal rib spacing of ribbed rebars is the same as the rebar diameter,and that the optimal rib height is 6% of the rebar diameter.展开更多
Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was ...Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was embedded in a 150 mm concrete cube,and the test embedded length was four times of the rebar diameter.Relationship between the mode of failure,the average bond strength and the average bond strength-slip for each rebar was analyzed.Results show that the failure mode of all specimens is the shearing off or desquamation of ribs,no splitting cracks appear on the cube specimens.The bond stress of deformed GFRP rebars mainly depends on the mechanical interaction between the ribs of the bar and the surrounding concrete,and the bond strength of deformed GFRP rebars is improved obviously.The optimal rib spacing is less than 2.5 times of the rebar diameter,and the rib height is more than 3% of the rebar diameter.展开更多
文摘We sought to evaluate immediate and delayed micro-tensile bond strength of Panavia F2.0 and Multilink Sprint resin cement to superficial, deep and cervical dentin. Thirty-six freshly extracted non-carious human molars were sectioned in the mesiodistal direction to expose three different dentin regions including superficial dentin (1 mm below the dentine-enamel junction), deep dentin (1 mm above the highest pulp horn) and cervical dentin (0.5 mm above the cemento-enamel junction and 0.5 mm below the dentine-enamel junction). Resin cements were applied on dentin surfaces and composite blocks were luted under constant seating pressure. Each group was divided into three subgroups according to time intervals. Specimens were sectioned to obtain sticks of 1 mm2 in diameter and subjected to microtensile bond strength testing at a cross head speed of 1 mrn/min. Both resin cements showed higher micro-tensile bond strength to superficial dentin than that to deep or cervical dentin (P 〈 0.001). Micro-ten- sile bond strengths of Panavia F2.0 were higher than those of Multilink Sprint at different dentin regions (P 〈 0.001). Immediate "micro-tensile bond strengths were higher than those of delayed micro-tensile bond strengths for both resin cements (P 〈 0.001). It was concluded that resin cements with different chemical formulations and applications yield significantly different micro-tensile bond strengths to different dentin regions.
文摘Rock anchors are a common safety measure for stabilising large-scale infrastructure,such as bridge towers,retaining walls,rock slopes and windmills.There are four principal failure modes for rock anchors:(a)tensile failure of the steel anchor,(b)anchor-grout interface failure,(c)grout-rock interface failure,and(d)rock mass uplift.Field tests were performed in a limestone quarry.These tests were designed to test failure modes B and C through pullout.In the tests of failure mode B,the shear stress on the anchor-grout interface is the largest at the top of the grout column and attenuates towards the distal end for small loads.The shear stress becomes uniformly distributed when the applied load is approximately 50%of the ultimate pullout load.The anchors designed to test failure mode C were installed with an endplate and had a higher toughness than the straight bar anchors.The shear stress on the grout-rock interface is the largest at the endplate and attenuates upward before slip starts along the interface.When the ultimate pullout load is reached,and the grout column starts to slip,the shear stress is approximately constant.The bond shear strength on the anchor-grout interface was approximately 20%of the uniaxial compressive strength of the grout,and the bond strength of the grout-rock interface was around 5%for that of the grout.The grout-rock interface is likely determined by whichever is weaker,the grout or the rock.
文摘Confining stresses serve as a pivotal determinant in shaping the behavior of grouted rock bolts.Nonetheless,prior investigations have oversimplified the three-dimensional stress state,primarily assuming hydrostatic stress conditions.Under these conditions,it is assumed that the intermediate principal stress(σ_(2))equals the minimum principal stress(σ_(3)).This assumption overlooks the potential variations in magnitudes of in situ stress conditions along all three directions near an underground opening where a rock bolt is installed.In this study,a series of push tests was meticulously conducted under triaxial conditions.These tests involved applying non-uniform confining stresses(σ_(2)≠σ_(3))to cubic specimens,aiming to unveil the previously overlooked influence of intermediate principal stresses on the strength properties of rock bolts.The results show that as the confining stresses increase from zero to higher levels,the pre-failure behavior changes from linear to nonlinear forms,resulting in an increase in initial stiffness from 2.08 kN/mm to 32.51 kN/mm.The load-displacement curves further illuminate distinct post-failure behavior at elevated levels of confining stresses,characterized by enhanced stiffness.Notably,the peak load capacity ranged from 27.9 kN to 46.5 kN as confining stresses advanced from σ_(2)=σ_(3)=0 to σ_(2)=20 MPa and σ_(3)=10 MPa.Additionally,the outcomes highlight an influence of confining stress on the lateral deformation of samples.Lower levels of confinement prompt overall dilation in lateral deformation,while higher confinements maintain a state of shrinkage.Furthermore,diverse failure modes have been identified,intricately tied to the arrangement of confining stresses.Lower confinements tend to induce a splitting mode of failure,whereas higher loads bring about a shift towards a pure interfacial shear-off and shear-crushed failure mechanism.
基金supported by the National Natural Science Foundation of China Key Projects of International Cooperation and Exchanges(No.42020104006)the National Natural Science Foundation of China(No.41630643)+1 种基金the Fundamental Research Funds for the Central Universities(No.CUGCJ1701)the Scientific Research Project of China Three Gorges Corporation LTD.
文摘In rock engineering,the shear strength of the basalt-concrete bonding interface is a key factor affecting the shear performance of hydroelectric dam foundations,embedded rock piles and rock bolts.In this study,30 sets of in-situ direct shear tests were conducted on the basalt-concrete bond interface in the Baihetan dam area to investigate the shear strength characteristics of the basalt-concrete bonding interface.The bonding interface contains two states,i.e.,the bonding interface is not sheared,termed as se(symbolic meaning see Table 1);the bonding interface is sheared with rupture surface,termed as si.The effects of lithology,Joints structure,rock type grade and concrete compressive strength on the shear strength of the concrete-basalt contact surface were investigated.The test results show that the shear strength of the bonding interface(s_(e)&s_(i))of columnar jointed basalt with concrete is greater than that of the bonding interface(s_(e)&s_(i))of non-columnar jointed one with the same rock type grade.When the rock type grade isⅢ_(2),fcol is 1.22 times higher than fncol and ccol is 1.13 times greater than cncol.The shear strength parameters of the basalt-concrete bonding interface differ significantly for different lithologies.The cohesion of the bonding interface(s_(i))of cryptocrystalline basalt with concrete is 2.05 times higher than that of the bonding interface(s_(i))of breccia lava with concrete under the same rock type grade condition.Rock type grade has a large influence on the shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i)).cnol increases by 33%when the grade of rock type rises fromⅢ_(1)toⅡ_(1).the rock type grade has a greater effect on bonding interface(s_(i))cohesion than the coefficient of friction.When the rock type grade is reduced fromⅢ_(2)toⅢ_(1),f_(ncol)′increases by 2%and c_(ncol)′improves by 44%.The shear strength of the non-columnar jointed basalt-concrete bonding interface(s_(e)&s_(i))increases with the increase of the compressive strength of concrete.When concrete compressive strength rises from 22.2 to 27.6 MPa,the cohesion increases by 94%.
基金Project (No. 200431882021) supported by the Western Communi-cation Construction and Science & Technological Project,China
文摘Based on the Canadian Standards Association (CSA) criteria,105 pullout specimens were tested to investigate the effect of different rib geometries on bond strength of glass fiber reinforced polymer (GFRP) rebars embedded in concrete. Two kinds of conventional reinforcing rebars were also studied for comparison. Each rebar was embedded in a 150 mm concrete cube,with the embedded length being four times the rebar diameter. The experimental parameters were the rebar type,rebar component,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Theoretical analysis was also carried out to explain the experimental phenomena and results. The experimental and theoretical results indicated that the bond strength of GFRP rebars was about 13%~35% lower than that of steel rebars. The bond strength and bond-slip behavior of the specially machined rebars varied with the rebar type,rebar diameter,rebar surface texture,rib height,rib spacing and rib width. Using the results,design recom-mendations were made concerning optimum rib geometries of GFRP ribbed rebars with superior bond-slip characteristics,which concluded that the optimal rib spacing of ribbed rebars is the same as the rebar diameter,and that the optimal rib height is 6% of the rebar diameter.
基金Sponsored by the Western Communication Construction and Science & Technological Project(Grant No.200431882021)the National Science Fundfor Distinguished Young Scholars (Grant No.50525823)
文摘Based on the Canadian Standards Association(CSA) criterion,experiments on 30 pull-out specimens were conducted to study the bond strength of deformed GFRP rebars with 8 different surface configurations.Each rebar was embedded in a 150 mm concrete cube,and the test embedded length was four times of the rebar diameter.Relationship between the mode of failure,the average bond strength and the average bond strength-slip for each rebar was analyzed.Results show that the failure mode of all specimens is the shearing off or desquamation of ribs,no splitting cracks appear on the cube specimens.The bond stress of deformed GFRP rebars mainly depends on the mechanical interaction between the ribs of the bar and the surrounding concrete,and the bond strength of deformed GFRP rebars is improved obviously.The optimal rib spacing is less than 2.5 times of the rebar diameter,and the rib height is more than 3% of the rebar diameter.