This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the second...This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.展开更多
BACKGROUND Vascular and nerve infiltration are important indicators for the progression and prognosis of gastric cancer(GC),but traditional imaging methods have some limitations in preoperative evaluation.In recent ye...BACKGROUND Vascular and nerve infiltration are important indicators for the progression and prognosis of gastric cancer(GC),but traditional imaging methods have some limitations in preoperative evaluation.In recent years,energy spectrum computed tomography(CT)multiparameter imaging technology has been gradually applied in clinical practice because of its advantages in tissue contrast and lesion detail display.AIM To explore and analyze the value of multiparameter energy spectrum CT imaging in the preoperative assessment of vascular invasion(LVI)and nerve invasion(PNI)in GC patients.METHODS Data from 62 patients with GC confirmed by pathology and accompanied by energy spectrum CT scanning at our hospital between September 2022 and September 2023,including 46 males and 16 females aged 36-71(57.5±9.1)years,were retrospectively collected.The patients were divided into a positive group(42 patients)and a negative group(20 patients)according to the presence of LVI/PNI.The CT values(CT40 keV,CT70 keV),iodine concentration(IC),and normalized IC(NIC)of lesions in the upper energy spectrum CT images of the arterial phase,venous phase,and delayed phase 40 and 70 keV were measured,and the slopes of the energy spectrum curves[K(40-70)]from 40 to 70 keV were calculated.Arterial Core Tip:To investigate the application value of multiparameter energy spectrum computed tomography(CT)imaging in the preoperative assessment of vascular and nerve infiltration in patients with gastric cancer(GC).The imaging data of GC patients were retrospectively analyzed to evaluate the accuracy and sensitivity of CT for identifying and quantifying vascular and nerve infiltration and for comparison with postoperative pathological results.The purpose of this study was to verify the clinical feasibility and potential advantages of multiparameter energy spectrum CT imaging in guiding preoperative diagnosis and treatment decision-making and to provide a new imaging basis for improving the diagnostic accuracy and prognosis of GC patients.展开更多
Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significa...Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significant. Considering the shortcomings of fast Fourier transform method (FFT) in analysis of muzzle impulse noise frequency characteristics, wavelet energy spectrum method is put forward. Based on specific experiment data, the frequency characteristics and spectral energy dis tribution can be obtained. The experiment results show that wavelet energy spectrum method is applicable in muzzle impulse noise characteristic analysis.展开更多
VOF (volume of fluid) method has been used to make the numerical simulation of freak wave come true. The comparisons between the numerical results and linear theoretical results corresponding to Eq.(5) have been c...VOF (volume of fluid) method has been used to make the numerical simulation of freak wave come true. The comparisons between the numerical results and linear theoretical results corresponding to Eq.(5) have been carried out to show that the numerical results have a better exhibition of nonlinear characteristics. Wavelet analysis method has been adopted to investigate the time-frequency energy spectrum of simulation freak waves and the results reveal strong nonlinear interaction enables energy to be transferred to high harmonics during the progress of its formation. Varying water depth can enhance the nonlinear interaction, making much more energy be transferred to high harmonics and freak waves with higher asymmetry be generated.展开更多
With the development of wireless technologies,multifarious standards are currently used in the underground coal mine communication systems.In this paper,the coexistence of 802.15.4 based wireless senser networks (WSN...With the development of wireless technologies,multifarious standards are currently used in the underground coal mine communication systems.In this paper,the coexistence of 802.15.4 based wireless senser networks (WSNs) with other wireless networks using cognitive radio technique are discussed.Multiple sensor nodes are involved in the spectrum sensing to avoid the interference from other wireless users.The more the sensor nodes cooperate in the sensing,the better the detection performance can be obtained; however,more energy is consumed.How to get the tradeoff between energy efficiency and detection performance is a key problem.According to the requirements for detection,we first give the least required detection time of a single sensor node.Then,the voting fusion rule is adopted for the final decision making.Finally,the relationship between final detection performance and energy consumption is analyzed.展开更多
In order to improve the energy efficiency(EE) in cognitive radio(CR), a joint optimal energy-efficient cooperative spectrum sensing(CSS) and transmission in multi-channel CR is proposed in this paper. EE is described ...In order to improve the energy efficiency(EE) in cognitive radio(CR), a joint optimal energy-efficient cooperative spectrum sensing(CSS) and transmission in multi-channel CR is proposed in this paper. EE is described as a tradeoff between the throughput and the entirely consumed power. A joint optimization problem is formulated to maximize EE by jointly optimizing local sensing time, number of cooperative sensing secondary users(SU), transmission bandwidth and power. A combined optimization algorithm of bi-level optimization, Polyblock optimization and Dinkelbach's optimization is proposed to solve the proposed non-convex optimization problem effectively. The simulation results show that, compared with throughput maximization model(TMM), the energy efficiency maximization model(EEMM) improves EE of the CR system and limits the excessive power consumption effectively.展开更多
The steady-state fluorescence spectrum characteristic of ethanol-water excimer has been studied in this paper. By analysing the features of the sharp emission spectrum with fine structures in a shortwave band and the ...The steady-state fluorescence spectrum characteristic of ethanol-water excimer has been studied in this paper. By analysing the features of the sharp emission spectrum with fine structures in a shortwave band and the characteristics of the broad and featureless fluorescence peaks in the longwave band, one can conclude that the excimers are formed between the new ethanol-water cluster molecules in the excited state and the ground state through the interaction among different chromophores. The excitation spectra in the two fluorescence bands have been studied, and their emission mechanisms have been ascertained based on the energy transfer theory. Furthermore, the critical distance of the resonance energy transfer has been calculated.展开更多
The streamwise velocity components at different vertical heights in wall turbulence were measured. Wavelet transform was used to study the turbulent energy spectra, indicating that the global spectrum results from the...The streamwise velocity components at different vertical heights in wall turbulence were measured. Wavelet transform was used to study the turbulent energy spectra, indicating that the global spectrum results from the weighted average of Fourier spectrum based on wavelet scales. W'avelet transform with more vanishing moments can express the declining of turbulent spectrum. The local wavelet spectrum shows that the physical phenomena such as deformation position in the boundary layer, and the or breakup of eddies are related to the vertical energy-containing eddies exist in a multi-scale form. Moreover, the size of these eddies increases with the measured points moving out of the wall. In the buffer region, the small scale energy-containing eddies with higher frequency are excited. In the outer region, the maximal energy is concentrated in the low-frequency large-scale eddies, and the frequency domain of energy-containing eddies becomes narrower.展开更多
Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage...Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage signals because these are easily accessible on-line. In the present work, we propose a novel method based on the wavelet packet transform and its energy spectrum for pattern recognition of splash signal. The result demonstrates that this novel method is more accuracy and a useful way of monitoring the spot welding quality.展开更多
On the basis of quantization of charge, the loop equations of quantum circuits are investigated by using the Helsenberg motion equation for a mesoscopic dissipation transmission line. On the supposition that the syste...On the basis of quantization of charge, the loop equations of quantum circuits are investigated by using the Helsenberg motion equation for a mesoscopic dissipation transmission line. On the supposition that the system has a symmetry under translation in charge space, the quantum current and the quantum energy spectrum in the mesoscopic transmission llne are given by solving their eigenvalue equations. Results show that the quantum current and the quantum energy spectrum are not only related to the parameters of the transmission llne, but also dependent on the quantized character of the charge obviously.展开更多
Secondary electron emission(SEE)of metal and dielectric materials plays a key role in multipactor discharge,which is a bottle neck problem for high-power satelliate components.Measurements of both the secondary electr...Secondary electron emission(SEE)of metal and dielectric materials plays a key role in multipactor discharge,which is a bottle neck problem for high-power satelliate components.Measurements of both the secondary electron yield(SEY)and the secondary electron energy spectrum(SES)are performed on metal samples for an accurate description of the real SEE phenomenon.In order to simplify the fitting process and improve the simulation efficiency,an improved model is proposed for the description of secondary electrons(SE)emitted from the material surface,including true,elastic,and inelastic SE.Embedding the novel SES model into the electromagnetic particle-in-cell method,the electronic resonant multipactor in microwave components is simulated successfully and hence the discharge threshold is predicted.Simulation results of the SES variation in the improved model demonstrate that the multipactor threshold is strongly dependent on SES.In addition,the mutipactor simulation results agree quite well with the experiment for the practical microwave component,while the numerical model of SEY and SES fits well with the sample data taken from the microwave component.展开更多
Combined with irregular wave-maker, the growing process of Wave Energy Spectrum in shallow water can be studied in wind wave channel on different water depth conditions, and its transformation characteristics and rule...Combined with irregular wave-maker, the growing process of Wave Energy Spectrum in shallow water can be studied in wind wave channel on different water depth conditions, and its transformation characteristics and rules can be obtained.展开更多
A method for analyzing the dynamic energy spectrum of intense pulsed ion beam(IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insu...A method for analyzing the dynamic energy spectrum of intense pulsed ion beam(IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes(MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450(active MID) and TEMP-4M(passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.展开更多
Ce^(3+)/Tb^(3+) co-doped and Ce^(3+)/Tb^(3+)/Eu^(3+) tri-doped β-NaYF_(4) photoluminescent microcrystals using oleic acid as surfactant were synthesized using the solvothermal method.Their microstructural characteris...Ce^(3+)/Tb^(3+) co-doped and Ce^(3+)/Tb^(3+)/Eu^(3+) tri-doped β-NaYF_(4) photoluminescent microcrystals using oleic acid as surfactant were synthesized using the solvothermal method.Their microstructural characteristics and photoluminescence properties were investigated in detail.They have the shape of hexagonal prism bipyramids with uniform particle size,which decreases with the concentrations of Tb^(3+) and Eu^(3+).The energy transfer processes of both the Ce^(3+)→Tb^(3+) and the Ce^(3+)→Tb^(3+)→Eu^(3+) were systematically studied.Compared with Eu^(3+) or Tb^(3+) single-doped β-NaYF_(4) microcrystals,the sensitization by Ce^(3+) for the photoluminescence of Tb^(3+) and Eu^(3+) leads to a broad excitation spectral bandwidth in the ultraviolet (UV) range.Meanwhile,the corresponding optical absorption efficiency is greatly enhanced.High energy transfer efficiencies have been observed from Ce^(3+) to Tb^(3+) and from Tb^(3+) to Eu^(3+).展开更多
Wave energy spectrum in shallow water can be studied in wind wave channel in combination with irregular wave- maker. Fetch length is successfully extended and by 'Relay' method the corresponding spectrum patte...Wave energy spectrum in shallow water can be studied in wind wave channel in combination with irregular wave- maker. Fetch length is successfully extended and by 'Relay' method the corresponding spectrum pattern and the wind velocity scale are obtained.展开更多
The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal c...The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal could be identified by wavelet packet decomposition and its energy spectrum conveniently, at the same time, quantification analysis were performed. The result demonstrates that this method is more advantageous and of practical value than traditional Fourier analysis method.展开更多
The wavelet packet is presented as a new kind of multiscale analysis technique followed by Wavelet analysis. The fundamental and realization arithmetic of the wavelet packet analysis method are described in this paper...The wavelet packet is presented as a new kind of multiscale analysis technique followed by Wavelet analysis. The fundamental and realization arithmetic of the wavelet packet analysis method are described in this paper. A new application approach of the wavelet packed method to extract the feature of the pulse signal from energy distributing angle is expatiated. It is convenient for the microchip to process and judge by using the wavelet packet analysis method to make the pulse signals quantized and analyzed. Kinds of experiments are simulated in the lab, and the experiments prove that it is a convenient and accurate method to extract the feature of the pulse signal based on wavelet packed-energy spectrumanalysis.展开更多
In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channe...In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channel sensing and data transmission and focus on the optimal SST structure to maximize the SU's expected achievable throughput.We consider imperfect knowledge of energy harvesting rate,which cannot be exactly known and only its statistical information is available.By formulating the problem of expected achievable throughput optimization as a mixed-integer non-linear programming one,we derive the optimal saveratio and number of sensed channels with indepth analysis.Simulation results show that the optimal SST structure outperforms random one and performance gain can be enhanced by increasing the SU's energy harvesting rate.展开更多
Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) ...Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) has to handle a large set of data, a duster based approach, specifically fuzzy c-means clustering (FCM), has been extensively used in energy detection based cooperative spectrum sensing (CSS). However, the performance of FCM degrades at low signal-to-noise ratios (SNR) and in the presence of multiple PUs as energy data patterns at the FC are often found to be non-spherical i.e. overlapping. To address the problem, this work explores the scope of kernel fuzzy c-means (KFCM) on energy detection based CSS through the projection of non-linear input data to a high dimensional feature space. Extensive simulation results are shown to highlight the improved detection of multiple PUs at low SNR with low energy consumption. An improvement in the detection probability by ~6.78% and ~6.96% at -15 dBW and -20 dBW, respectively, is achieved over the existing FCM method.展开更多
With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We End that there are two energy bands for each component. The critical conditio...With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We End that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only. According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.展开更多
文摘This study develops an Enhanced Threshold Based Energy Detection approach(ETBED)for spectrum sensing in a cognitive radio network.The threshold identification method is implemented in the received signal at the secondary user based on the square law.The proposed method is implemented with the signal transmission of multiple outputs-orthogonal frequency division multiplexing.Additionally,the proposed method is considered the dynamic detection threshold adjustments and energy identification spectrum sensing technique in cognitive radio systems.In the dynamic threshold,the signal ratio-based threshold is fixed.The threshold is computed by considering the Modified Black Widow Optimization Algorithm(MBWO).So,the proposed methodology is a combination of dynamic threshold detection and MBWO.The general threshold-based detection technique has different limitations such as the inability optimal signal threshold for determining the presence of the primary user signal.These limitations undermine the sensing accuracy of the energy identification technique.Hence,the ETBED technique is developed to enhance the energy efficiency of cognitive radio networks.The projected approach is executed and analyzed with performance and comparison analysis.The proposed method is contrasted with the conventional techniques of theWhale Optimization Algorithm(WOA)and GreyWolf Optimization(GWO).It indicated superior results,achieving a high average throughput of 2.2 Mbps and an energy efficiency of 3.8,outperforming conventional techniques.
文摘BACKGROUND Vascular and nerve infiltration are important indicators for the progression and prognosis of gastric cancer(GC),but traditional imaging methods have some limitations in preoperative evaluation.In recent years,energy spectrum computed tomography(CT)multiparameter imaging technology has been gradually applied in clinical practice because of its advantages in tissue contrast and lesion detail display.AIM To explore and analyze the value of multiparameter energy spectrum CT imaging in the preoperative assessment of vascular invasion(LVI)and nerve invasion(PNI)in GC patients.METHODS Data from 62 patients with GC confirmed by pathology and accompanied by energy spectrum CT scanning at our hospital between September 2022 and September 2023,including 46 males and 16 females aged 36-71(57.5±9.1)years,were retrospectively collected.The patients were divided into a positive group(42 patients)and a negative group(20 patients)according to the presence of LVI/PNI.The CT values(CT40 keV,CT70 keV),iodine concentration(IC),and normalized IC(NIC)of lesions in the upper energy spectrum CT images of the arterial phase,venous phase,and delayed phase 40 and 70 keV were measured,and the slopes of the energy spectrum curves[K(40-70)]from 40 to 70 keV were calculated.Arterial Core Tip:To investigate the application value of multiparameter energy spectrum computed tomography(CT)imaging in the preoperative assessment of vascular and nerve infiltration in patients with gastric cancer(GC).The imaging data of GC patients were retrospectively analyzed to evaluate the accuracy and sensitivity of CT for identifying and quantifying vascular and nerve infiltration and for comparison with postoperative pathological results.The purpose of this study was to verify the clinical feasibility and potential advantages of multiparameter energy spectrum CT imaging in guiding preoperative diagnosis and treatment decision-making and to provide a new imaging basis for improving the diagnostic accuracy and prognosis of GC patients.
文摘Because muzzle impulse noise could cause damage to or have an intluence on the operator, tiae ettecnve protecnve measures should be taken. Therefore, correct analysis of impulse noise characteristics is very significant. Considering the shortcomings of fast Fourier transform method (FFT) in analysis of muzzle impulse noise frequency characteristics, wavelet energy spectrum method is put forward. Based on specific experiment data, the frequency characteristics and spectral energy dis tribution can be obtained. The experiment results show that wavelet energy spectrum method is applicable in muzzle impulse noise characteristic analysis.
文摘VOF (volume of fluid) method has been used to make the numerical simulation of freak wave come true. The comparisons between the numerical results and linear theoretical results corresponding to Eq.(5) have been carried out to show that the numerical results have a better exhibition of nonlinear characteristics. Wavelet analysis method has been adopted to investigate the time-frequency energy spectrum of simulation freak waves and the results reveal strong nonlinear interaction enables energy to be transferred to high harmonics during the progress of its formation. Varying water depth can enhance the nonlinear interaction, making much more energy be transferred to high harmonics and freak waves with higher asymmetry be generated.
基金Special Funds for Postdoctoral Innovative Projects of Shandong Province(No.201103099)
文摘With the development of wireless technologies,multifarious standards are currently used in the underground coal mine communication systems.In this paper,the coexistence of 802.15.4 based wireless senser networks (WSNs) with other wireless networks using cognitive radio technique are discussed.Multiple sensor nodes are involved in the spectrum sensing to avoid the interference from other wireless users.The more the sensor nodes cooperate in the sensing,the better the detection performance can be obtained; however,more energy is consumed.How to get the tradeoff between energy efficiency and detection performance is a key problem.According to the requirements for detection,we first give the least required detection time of a single sensor node.Then,the voting fusion rule is adopted for the final decision making.Finally,the relationship between final detection performance and energy consumption is analyzed.
基金supported by the National Natural Science Foundations of China under Grant Nos. 61301105, 61401288 and 61601221the Natural Science Foundations of Jiangsu Province under Grant No. BK20140828+1 种基金the China Postdoctoral Science Foundations under Grant Nos. 2015M581791 and 2015M580425the Fundamental Research Funds for the Central Universities under Grant No. DUT16RC(3)045
文摘In order to improve the energy efficiency(EE) in cognitive radio(CR), a joint optimal energy-efficient cooperative spectrum sensing(CSS) and transmission in multi-channel CR is proposed in this paper. EE is described as a tradeoff between the throughput and the entirely consumed power. A joint optimization problem is formulated to maximize EE by jointly optimizing local sensing time, number of cooperative sensing secondary users(SU), transmission bandwidth and power. A combined optimization algorithm of bi-level optimization, Polyblock optimization and Dinkelbach's optimization is proposed to solve the proposed non-convex optimization problem effectively. The simulation results show that, compared with throughput maximization model(TMM), the energy efficiency maximization model(EEMM) improves EE of the CR system and limits the excessive power consumption effectively.
文摘The steady-state fluorescence spectrum characteristic of ethanol-water excimer has been studied in this paper. By analysing the features of the sharp emission spectrum with fine structures in a shortwave band and the characteristics of the broad and featureless fluorescence peaks in the longwave band, one can conclude that the excimers are formed between the new ethanol-water cluster molecules in the excited state and the ground state through the interaction among different chromophores. The excitation spectra in the two fluorescence bands have been studied, and their emission mechanisms have been ascertained based on the energy transfer theory. Furthermore, the critical distance of the resonance energy transfer has been calculated.
基金supported by the National Natural Science Foundation of China (Nos. 10832001 and10872145)the Program for New Century Excellent Talents in Universities of Education Min-istry of China
文摘The streamwise velocity components at different vertical heights in wall turbulence were measured. Wavelet transform was used to study the turbulent energy spectra, indicating that the global spectrum results from the weighted average of Fourier spectrum based on wavelet scales. W'avelet transform with more vanishing moments can express the declining of turbulent spectrum. The local wavelet spectrum shows that the physical phenomena such as deformation position in the boundary layer, and the or breakup of eddies are related to the vertical energy-containing eddies exist in a multi-scale form. Moreover, the size of these eddies increases with the measured points moving out of the wall. In the buffer region, the small scale energy-containing eddies with higher frequency are excited. In the outer region, the maximal energy is concentrated in the low-frequency large-scale eddies, and the frequency domain of energy-containing eddies becomes narrower.
基金This work is supported by Nature Science Foundation of Peo-ple ' s Republic of China ( No.50045019).
文摘Nugget splash during aluminum alloys spot welding has a detrimental effect on weld nugget integrity, strength and durability of the welded joints. This investigation is performed to identify nugget splash from voltage signals because these are easily accessible on-line. In the present work, we propose a novel method based on the wavelet packet transform and its energy spectrum for pattern recognition of splash signal. The result demonstrates that this novel method is more accuracy and a useful way of monitoring the spot welding quality.
基金Project supported by the Science Foundation of Jiangsu Provincial Education 0ffice, China (Grant No 05KJD140035).
文摘On the basis of quantization of charge, the loop equations of quantum circuits are investigated by using the Helsenberg motion equation for a mesoscopic dissipation transmission line. On the supposition that the system has a symmetry under translation in charge space, the quantum current and the quantum energy spectrum in the mesoscopic transmission llne are given by solving their eigenvalue equations. Results show that the quantum current and the quantum energy spectrum are not only related to the parameters of the transmission llne, but also dependent on the quantized character of the charge obviously.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1537211,11705142,and 11675278)the National Key Laboratory Foundation,China(Grant No.9140C530101150C53011)
文摘Secondary electron emission(SEE)of metal and dielectric materials plays a key role in multipactor discharge,which is a bottle neck problem for high-power satelliate components.Measurements of both the secondary electron yield(SEY)and the secondary electron energy spectrum(SES)are performed on metal samples for an accurate description of the real SEE phenomenon.In order to simplify the fitting process and improve the simulation efficiency,an improved model is proposed for the description of secondary electrons(SE)emitted from the material surface,including true,elastic,and inelastic SE.Embedding the novel SES model into the electromagnetic particle-in-cell method,the electronic resonant multipactor in microwave components is simulated successfully and hence the discharge threshold is predicted.Simulation results of the SES variation in the improved model demonstrate that the multipactor threshold is strongly dependent on SES.In addition,the mutipactor simulation results agree quite well with the experiment for the practical microwave component,while the numerical model of SEY and SES fits well with the sample data taken from the microwave component.
文摘Combined with irregular wave-maker, the growing process of Wave Energy Spectrum in shallow water can be studied in wind wave channel on different water depth conditions, and its transformation characteristics and rules can be obtained.
基金supported by the National Natural Science Foundation of China(No.11175012)the National Magnetic Confinement Fusion Program(No.2013GB109004)
文摘A method for analyzing the dynamic energy spectrum of intense pulsed ion beam(IPIB) was proposed.Its influence on beam energy deposition in metal target was studied with IPIB produced by two types of magnetically insulated diodes(MID).The emission of IPIB was described with space charge limitation model,and the dynamic energy spectrum was further analyzed with time-of-flight method.IPIBs generated by pulsed accelerators of BIPPAB-450(active MID) and TEMP-4M(passive MID) were studied.The dynamic energy spectrum was used to deduce the power density distribution of IPIB in the target with Monte Carlo simulation and infrared imaging diagnostics.The effect on the distribution and evolution of thermal field induced by the characteristics of IPIB dynamic energy spectrum was discussed.
基金Funded by the National Natural Science Foundation of China(Nos.21571095,51362020)the Jiangxi Provincial Department of Education(No.KJLD13008)the Scientific Research Projects of Hunan Education Department(No.18C1442)。
文摘Ce^(3+)/Tb^(3+) co-doped and Ce^(3+)/Tb^(3+)/Eu^(3+) tri-doped β-NaYF_(4) photoluminescent microcrystals using oleic acid as surfactant were synthesized using the solvothermal method.Their microstructural characteristics and photoluminescence properties were investigated in detail.They have the shape of hexagonal prism bipyramids with uniform particle size,which decreases with the concentrations of Tb^(3+) and Eu^(3+).The energy transfer processes of both the Ce^(3+)→Tb^(3+) and the Ce^(3+)→Tb^(3+)→Eu^(3+) were systematically studied.Compared with Eu^(3+) or Tb^(3+) single-doped β-NaYF_(4) microcrystals,the sensitization by Ce^(3+) for the photoluminescence of Tb^(3+) and Eu^(3+) leads to a broad excitation spectral bandwidth in the ultraviolet (UV) range.Meanwhile,the corresponding optical absorption efficiency is greatly enhanced.High energy transfer efficiencies have been observed from Ce^(3+) to Tb^(3+) and from Tb^(3+) to Eu^(3+).
文摘Wave energy spectrum in shallow water can be studied in wind wave channel in combination with irregular wave- maker. Fetch length is successfully extended and by 'Relay' method the corresponding spectrum pattern and the wind velocity scale are obtained.
文摘The theory and method of wavelet packet decomposition and its energy spectrum dealing with the coal rock Interface Identification are presented in the paper. The characteristic frequency band of the coal rock signal could be identified by wavelet packet decomposition and its energy spectrum conveniently, at the same time, quantification analysis were performed. The result demonstrates that this method is more advantageous and of practical value than traditional Fourier analysis method.
文摘The wavelet packet is presented as a new kind of multiscale analysis technique followed by Wavelet analysis. The fundamental and realization arithmetic of the wavelet packet analysis method are described in this paper. A new application approach of the wavelet packed method to extract the feature of the pulse signal from energy distributing angle is expatiated. It is convenient for the microchip to process and judge by using the wavelet packet analysis method to make the pulse signals quantized and analyzed. Kinds of experiments are simulated in the lab, and the experiments prove that it is a convenient and accurate method to extract the feature of the pulse signal based on wavelet packed-energy spectrumanalysis.
基金supported by National Nature Science Foundation of China(NO.61372109)
文摘In this paper,we consider a cognitive radio system with energy harvesting,in which the secondary user operates in a saving-sensing-transmitting(SST) fashion.We investigate the tradeoff between energy harvesting,channel sensing and data transmission and focus on the optimal SST structure to maximize the SU's expected achievable throughput.We consider imperfect knowledge of energy harvesting rate,which cannot be exactly known and only its statistical information is available.By formulating the problem of expected achievable throughput optimization as a mixed-integer non-linear programming one,we derive the optimal saveratio and number of sensed channels with indepth analysis.Simulation results show that the optimal SST structure outperforms random one and performance gain can be enhanced by increasing the SU's energy harvesting rate.
文摘Cooperation in spectral sensing (SS) offers a fast and reliable detection of primary user (PU) transmission over a frequency spectrum at the expense of increased energy consumption. Since the fusion center (FC) has to handle a large set of data, a duster based approach, specifically fuzzy c-means clustering (FCM), has been extensively used in energy detection based cooperative spectrum sensing (CSS). However, the performance of FCM degrades at low signal-to-noise ratios (SNR) and in the presence of multiple PUs as energy data patterns at the FC are often found to be non-spherical i.e. overlapping. To address the problem, this work explores the scope of kernel fuzzy c-means (KFCM) on energy detection based CSS through the projection of non-linear input data to a high dimensional feature space. Extensive simulation results are shown to highlight the improved detection of multiple PUs at low SNR with low energy consumption. An improvement in the detection probability by ~6.78% and ~6.96% at -15 dBW and -20 dBW, respectively, is achieved over the existing FCM method.
文摘With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We End that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only. According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.