In order to further optimize welding process of Nb-Ti-Mo microalloyed steel, welding thermal cycles on coarse-grained heat-affected zone (CGHAZ) of welded joints were simulated using Gleeble 1500. The microstructure...In order to further optimize welding process of Nb-Ti-Mo microalloyed steel, welding thermal cycles on coarse-grained heat-affected zone (CGHAZ) of welded joints were simulated using Gleeble 1500. The microstructure and low-temperature impact fracture were investigated using a scanning electron microscope and a pendulum impact machine, respectively. Moreover, the relationship between cooling time ts/5 and the microstructure of CGHAZ was discussed, and the effect of microstructure on impact toughness was also studied. As cooling time increased, martensite fraction decreased from 97.8% (3 s) to 3.0% (60 s). The fraction of martensite/austenite (M/A) constituent increased from 2.2% (3 s) to 39.0% (60 s), its shape changed from granular to strip, and the maximum length increased from 2.4 μm (3 s) to 7.0 μm (60 s). As cooling time increased, the prior austenite grain size increased from 34.0 μm (3 s) to 49.0 gm (60 s), the impact absorption energy reduced from 101.8 J (5 s) to 7.2 J (60 s), and the fracture mechanism changed from quasi-cleavage fracture to cleavage fracture. The decreased toughness of CGHAZ was due to the reduction of lath martensite-content, coarsening of original austenite grain, and increase and coarsening of M/A constituent. The heat input was controlled under 7 kJ cm-1 during actual welding for these steels.展开更多
First,strip cast samples of high strength microalloyed steel with sub-rapid solidification characteristics were prepared by simulated strip casting technique.Next,the isothermal growth of austenite grain during the re...First,strip cast samples of high strength microalloyed steel with sub-rapid solidification characteristics were prepared by simulated strip casting technique.Next,the isothermal growth of austenite grain during the reheating treatment of strip casts was observed in situ through confocal laser scanning microscope(CLSM).The results indicated that the time exponent of grains growth suddenly rise when the isothermal temperature higher than 1000℃.And the activation energy for austenite grain growth were calculated to be 538.0 kJ/mol in the high temperature region(above 1000℃)and 693.2 kJ/mol in the low temperature region(below 1000℃),respectively.Then,the kinetics model of austenite isothermal growth was established,which can predict the austenite grain size during isothermal hold very well.Besides,high density of second phase particles with small size was found during the isothermal hold at the low temperature region,leading to the refinement of austenite grain.After isothermal hold at different temperature for 1800 s,the bainite transformation in microalloyed steel strip was also observed in situ during the continuous cooling process.And growth rates of bainite plates with different nucleation positions and different prior austenite grain size(PAGS)were calculated.It was indicated that the growth rate of the bainite plate is not only related to the nucleation position but also to the PAGS.展开更多
Dry sliding friction and wear test of Nb containing low carbon microalloyed steel was carried out at room temperature,and the effect of Nb on the wear behavior of the steel,as welll as the mechanism was studied.Scanni...Dry sliding friction and wear test of Nb containing low carbon microalloyed steel was carried out at room temperature,and the effect of Nb on the wear behavior of the steel,as welll as the mechanism was studied.Scanning electron microscopy(SEM) and energy dispersive spectrometry(EDS) were employed to analyze the morphology and composition of the worn surface,and the structure evolution of the plastic deformation layer.The carbide content and type in the steel were analyzed by the electrolytic extraction device and X-ray diffraction(XRD).The experimental results demonstrate that the addition of 0.2% Nb can refine the grain and generate Nb C to improve the wear resistance of the steel.By enhancing the load and speed of wear experiment,the wear mechanism of the test steel with 0.2% Nb changes from slight oxidation wear to severe adhesion wear and oxidation wear.Compared with the load,the increase in the rotation speed exerts a greater influence on the wear of the test steel.展开更多
The loading capacity of ultralarge container ships has reached 24000 TEUs so far,and to ensure the safe operation of these ships,the maxmium thickness of crack arrest steel used in the upper deck areas reaches 100 mm,...The loading capacity of ultralarge container ships has reached 24000 TEUs so far,and to ensure the safe operation of these ships,the maxmium thickness of crack arrest steel used in the upper deck areas reaches 100 mm,and crack arrest toughness(K_(ca))needs to be>8000 N/mm^(3)/2.The EH47 steel was employed to study the effect of Nb on the phase transformation of supercooled austenite in the continuous cooling process after rolling and the effect of Nb on microstructure and mechanical properties of the crack arrest steel plate.It was found that the addition of 0.02%Nb can inhibit the ferrite transformation,improve the steel plate strength,and reduce the strength inhomogeneity in the thickness direction.Industrial production of 100 mm-thick EH47 was carried out based on the function of Nb in EH47 steel,and the test results reveal that high-strength EH47 shipbuilding plates with high toughness,excellent fracture and crack arrest toughness,and good welding properties can be produced using Nb-microalloyed composition design and the thermal mechanical control process(TMCP);furthermore,the value of the crack arrest toughness reached 9450.7 N/mm^(3/2) at-10℃.展开更多
The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du...The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.展开更多
The microstructure and the characteristics of the inclusions embedded in ferrite matrix in simulated coarse-grain heat affected zone (CGHAZ) of a Ti-Zr-treated high strength low alloy (HSLA) steel have been investigat...The microstructure and the characteristics of the inclusions embedded in ferrite matrix in simulated coarse-grain heat affected zone (CGHAZ) of a Ti-Zr-treated high strength low alloy (HSLA) steel have been investigated. The microstructure of the simulated CGHAZ dominantly consisted of intragranular acicular ferrite (IAF) combining with a small amount of polygonal ferrite (PF), widmanst tten ferrite (WF), bainite ferrite (BF), pearlite and martensite-austenite (M-A) islands. The PF, WF and BF were generally observed at the prior austenite grain boundaries and the interlocking acicular ferrite was usually found intragranularly. It was found that the inclusions were composed of Ti2O3, ZrO2, Al2O3 locating at the center of the particles and MnS lying on the surface layer of the inclusions. The intragranular complex inclusions promoted the acicular ferrite formation and the refinement of microstructure whilst those at prior austenite grain boundaries caused PF formation on the inclusions. The simulated CGHAZ consisting of such complicated microstructure exhibited desired mechanical properties.展开更多
The microstractural evolution of microalloyed steel during hot forging process was investigated using physical simulation experiments. The dynamic recrystallized fraction was described by modifying Avrami's equation,...The microstractural evolution of microalloyed steel during hot forging process was investigated using physical simulation experiments. The dynamic recrystallized fraction was described by modifying Avrami's equation, the parameters of which were determined by single hit compression tests. Double hit compression tests were performed to model the equation describing the static recrystallized fraction, and the obtained predicted values were in good agreement with the measured values. Austenitic grain growth was modeled as: Dinc^5 = D0^5 + 1.6 × 10^32t·exp ( -716870/RT ) using isothermal tests. Furthermore, an equation describing the dynamic recrystallized grain size was given as Ddyn=3771·Z^-0.2. The models of microstructural evolution could be applied to the numerical simulation of hot forging.展开更多
The microstructural features and grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels were investigated using optical microscopy, scanning electron mi...The microstructural features and grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels were investigated using optical microscopy, scanning electron microscopy, and electron backscattering dif- fraction. The coarse-grained region of the heat-affected zone consists of predominantly bainite and a small proportion of acicular ferrite. Bainite packets are separated by high angle boundaries. Acicular ferrite laths or plates in the coarse-grained region of the heat-affected zone formed prior to bainite packets partition austenite grains into many smaller and separate areas, resulting in fine-grained mixed microstruc- tures. Electron backscattefing diffraction analysis indicates that the average crystallographic grain size of the coarse-grained region of the heat-affected zone reaches 6-9 μm, much smaller than that of anstanite grains.展开更多
The influence of microalloying additions on the mechanical properties of a low-carbon cast steel containing combinations of V, Nb, and Ti in the as-cast condition was evaluated. Tensile and hardness test results indic...The influence of microalloying additions on the mechanical properties of a low-carbon cast steel containing combinations of V, Nb, and Ti in the as-cast condition was evaluated. Tensile and hardness test results indicated that good combinations of strength and ductility could be achieved by V and Nb additions. While the yield strength and UTS (ultimate tensile strength) increased up to the range of 378-435 MPa and 579- 590 MPa, respectively in the microalloyed heats, their total elongation ranged from 18% to 23%. The presence of Ti, however, led to some reduction in the strength. Microstructural studies including scanning electron microscopy (SEM) and optical microscopy revealed that coarse TiN particles were responsible for this behavior. The Charpy impact values of all compositions indicated that microalloying additions significantly decreased the impact energy and led to the dominance of cleavage facets on the fracture surfaces. It seems that the increase in the hardness of coarse ferrite grains due to the precipitation hardening is the main reason for brittle fracture.展开更多
A dilatometer was used to study the kinetics of bainite-to-austenite transformation in low carbon microalloyed steel with the initial microstructure of bainite during the continuous reheating process. The bainite-to-a...A dilatometer was used to study the kinetics of bainite-to-austenite transformation in low carbon microalloyed steel with the initial microstructure of bainite during the continuous reheating process. The bainite-to-austenite trans- formation was observed to take place in two steps at low heating rate. The first step is the dissolution of bainite, and the second one is the remaining bainite-to-austenite transformation controlled by a dissolution process. The calculation result of the kinetics of austenite formation shows that the two steps occur by diffusion at low heating rate. However, at high heating rate the bainite-to-austenite transformation occurs in a single step, and the process is mainly dominated by shear. The growth rate of austenite reaches the maximum at about 835℃ at different heating rates and the growth rate of austenite as a function of temperature increases with the increase in heating rate.展开更多
Transmission electron microscopy (TEM) and physics-chemical phase analysis were employed to investigate the precipitates in high strength steels microalloyed with Ti produced by compact strip production (CSP). It ...Transmission electron microscopy (TEM) and physics-chemical phase analysis were employed to investigate the precipitates in high strength steels microalloyed with Ti produced by compact strip production (CSP). It was seen that precipitates in Ti microalloyed steels mainly included TiN, Ti4C2S2, and TiC. The size of TiN particles varied from 50 to 500 nm, and they could precipitate during or before soaking. The Ti4C2S2 with the size of 40-100 nm might precipitate before rolling, and the TiC particles with the size of 5-50 nm precipitated heterogeneously. High Ti content would lead to the presence of bigger TiC particles that precipitated in austenite, and by contrast, TiC particles that precipitated in ferrite and the transformation of austenite to ferrite was smaller. They were less than 30 nm and mainly responsible for precipitate strengthening. It should be noted that the TiC particles in higher Ti content were generally smaller than those in the steel with a lower Ti content.展开更多
The investigation on the behavior of RE in microalloyed steel containing Nb and Ti indicates RE still have the effect of purifying molten steel and metamorphose inclusions even when the composition of S is pretty low(...The investigation on the behavior of RE in microalloyed steel containing Nb and Ti indicates RE still have the effect of purifying molten steel and metamorphose inclusions even when the composition of S is pretty low(S<0 003%). The optimum performance of the experimental steels can be obtained when w RE / w O+S is controlled around 3 9. The content of solid solution RE can reach 1×10 -5 ~1×10 -4 order of magnitude in ultra low sulfur steel. The additions of RE can reduce the segregation of S and P at the grain boundary, delay the dynamic recrystallization, refine the grain and second phase particles, and promote the precipitation of (Nb, Ti)(C, N). RE also exhibit the microalloying effect in steel.展开更多
The influence of rare earths on the behavior of precipitation of 14MnNb,X60 and 10MnV steels was studied by STEM, XRD, ICP and thermal simulation method. The main carbonitride precipitates are Nb(C, N),(Nb, Ti)(C, N)a...The influence of rare earths on the behavior of precipitation of 14MnNb,X60 and 10MnV steels was studied by STEM, XRD, ICP and thermal simulation method. The main carbonitride precipitates are Nb(C, N),(Nb, Ti)(C, N)and V(C, N). In austenite RE delays the beginning of precipitation, and decreases the rate of precipitation. In ferrite RE promotes precipitation and increases the amount of equilibrium carbonitride precipitation. RE can make precipitates fine, globular and dispersed in the microalloyed steels. With the increase of the amount of RE in steel, the amount of precipitation increases. The promotion effect is weakened with excessive RE. RE has only little influence on the strength of microalloyed steel, but it can improve impact toughness effectively.展开更多
Grain refinement is one of the effective methods to develop new generation low carbon microalloyed steels possessing excellent combination of mechanical properties. The microstructural evolution and ferrite grain refi...Grain refinement is one of the effective methods to develop new generation low carbon microalloyed steels possessing excellent combination of mechanical properties. The microstructural evolution and ferrite grain refinement at the deformation temperature of 865℃, above Ar3, with different strain rates were investigated using single pass isothermal hot compression experiments for a low carbon Nb-Ti microalloyed steel. The physical processes that occurred during deformation were discussed by observing the optical microstructure and analyzing the true stress-true strain responses. At strain rates of 0.001 and 0.01s^-1, there is no evidence of work hardening behavior during hot deformation and strain-induced transformation (SIT) leads to dynamic flow softening in flow curves. Optical microscopy observation shows that ultrafine and equiaxed ferrite with grain sizes of 2μm can be obtained by applying deformation with strain rate of 0.1 s^-1 due to SIT just after deformation. Furthermore, increasing the strain rate from 0.001 to 0.1 s^-1 reduces both the grain size of the equiaxed ferrite and the amount of deformed ferrite.展开更多
Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was s...Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was successfully created through successive 2 processes, and the activation energy Q for growth was estimated to be about 693.2 kJ/mol, which directly shows the inhibition effect of microalloy elements on the growth of ultra-fine austenite grains.展开更多
Microalloying element Nb in low carbon steels produced by compact strip production (CSP) process plays an important role in inhibiting recrystallization, decreasing the transformation temperature and grain refinemen...Microalloying element Nb in low carbon steels produced by compact strip production (CSP) process plays an important role in inhibiting recrystallization, decreasing the transformation temperature and grain refinement.With decreasing the rolling temperature, dislocations can be pinned by carbonitrides and the strength is increased. Based on the two sublattice model, with metal atom sublattice and interstitial atom sublattice,a thermodynamic model for carbonitride was established to calculate the equilibrium between matrix and carbonitride. In the steel produced by CSP, the calculation results showed that the starting temperature of precipitation of Ti and Nb are 1340℃ and 1040℃, respectively. In the range of 890-950℃, Nb rapidly precipitated. And the maximum of the atomic fraction of Nb in carbonitride was about 0.68. The morphologies and energy spectrum of the precipitates showed that (NbTi) (CN) precipitated near the dislocations. The experiment results show that Nb rapidly precipitated when the temperature was lower than 970℃, and the atomic fraction of Nb in carbonitride was about 60%-80%. The calculation results are in agreement with the experiment data. Therefore the thermodynamic model can be a useful assistant tool in the research on the precipitates in the low carbon steels produced by CSP.展开更多
The dynamic recrystallization (DRX) behavior of Nb-Ti microalloyed steels was investigated by isothermal single compression tests in the temperature range of 900-1 150 ℃ at constant strain rates of 0.1-5 s^-1. DRX ...The dynamic recrystallization (DRX) behavior of Nb-Ti microalloyed steels was investigated by isothermal single compression tests in the temperature range of 900-1 150 ℃ at constant strain rates of 0.1-5 s^-1. DRX was retarded effectively at low temperature due to the onset of dynamic precipitation of Nb and Ti carbonitrides, resulting in higher values of the peak strain. An expression was developed for the activation energy of deformation as a function of the contents of Nb and Ti in solution as well as other alloying elements. A new value of corrective factor was determined and applied to quantify the retardation produced by increase in the amount of Nb and Ti dissolved at the reheating temperature. The ratio of critical strain to peak strain decreases with increasing equivalent Nb content. In addition, the effects of Ti content and deformation conditions on DRX kinetics and steady state grain size were determined. Finally, the kinetics of dynamic precipitation was determined and effect of dynamic precipitation on the onset of DRX was clarified based on the comparison between precipitate pinning force and recrystallization driving force.展开更多
The effects of chemical composition and cooling rate after solidication on the grain coarsening temperature,T_(GC),of the V-Ti-N microalloyed steels have been investigated.It is shown that the T_(GC) may be obviously ...The effects of chemical composition and cooling rate after solidication on the grain coarsening temperature,T_(GC),of the V-Ti-N microalloyed steels have been investigated.It is shown that the T_(GC) may be obviously raised by adding even a little Ti to the base steel so as to pre- cipitate a great deal of fine Ti-bearing particles of about 10 nm.The T_(GC) does not increase with the cooling rate,as it is over a certain critical value.The T_(GC) is insensitive to any varia- tion of N content at simulated cooling condition of 150 mm continuous cast slab.The T_(GC) may be dropped down about 100℃ by adding 0.33 wt-%Mo to the steels.The sensitivi- ty of T_(GC) to cooling condition relates to the Ti and V contents.展开更多
The effect of acicular ferrite (AF) on banded structures in low-carbon microalloyed steel with Mn segregation during both iso- thermal transformation and continuous cooling processes was studied by dilatometry and m...The effect of acicular ferrite (AF) on banded structures in low-carbon microalloyed steel with Mn segregation during both iso- thermal transformation and continuous cooling processes was studied by dilatometry and microscopic observation. With respect to the iso- thermal transformation process, the specimen isothermed at 550℃ consisted of AF in Mn-poor bands and martensite in Mn-rich bands, whereas the specimen isothermed at 450℃ exhibited two different morphologies of AF that appeared as bands. At a continuous cooling rate in the range of 4 to 50℃/s, a mixture of AF and martensite formed in both segregated bands, and the volume fraction of martensite in Mn-rich bands was always higher than that in Mn-poor bands. An increased cooling rate resulted in a decrease in the difference of martensite volume fraction between Mn-rich and Mn-poor bands and thereby leaded to less distinct microstrucmral banding. The results show that Mn segregation and cooling rate strongly affect the formation of AF-containing banded structures. The formation mechanism of microstructural banding was also discussed.展开更多
Using Gleeble-1500 system, the influence of holding time on bainite transformation in deformed niobium microalloyed steel during continuous cooling was analyzed, and the carbides in upper bainite were also systematica...Using Gleeble-1500 system, the influence of holding time on bainite transformation in deformed niobium microalloyed steel during continuous cooling was analyzed, and the carbides in upper bainite were also systematically researched. The results show that the occurrence of the static recrystallization decreases the amount of bainite with an increase in the holding time and the emergence of retained austenite (RA) with the longer holding time. Two types of carbides were observed in upper bainite with regard to their precipitation sites. They either existed between the bainite ferrite laths or co-existed with RA. The formation mechanism of two kinds of carbides was analyzed by combining TEM micrographs with the model.展开更多
基金This work was financially supported by the National Natural Science Foundation of China (No. 51775102), Open Research Fund from the State Key Laboratory of Roiling and Automation, Northeastern University (No. 2016005) and Project Funded by China Postdoctoral Science Foundation (No. 2016M601877).
文摘In order to further optimize welding process of Nb-Ti-Mo microalloyed steel, welding thermal cycles on coarse-grained heat-affected zone (CGHAZ) of welded joints were simulated using Gleeble 1500. The microstructure and low-temperature impact fracture were investigated using a scanning electron microscope and a pendulum impact machine, respectively. Moreover, the relationship between cooling time ts/5 and the microstructure of CGHAZ was discussed, and the effect of microstructure on impact toughness was also studied. As cooling time increased, martensite fraction decreased from 97.8% (3 s) to 3.0% (60 s). The fraction of martensite/austenite (M/A) constituent increased from 2.2% (3 s) to 39.0% (60 s), its shape changed from granular to strip, and the maximum length increased from 2.4 μm (3 s) to 7.0 μm (60 s). As cooling time increased, the prior austenite grain size increased from 34.0 μm (3 s) to 49.0 gm (60 s), the impact absorption energy reduced from 101.8 J (5 s) to 7.2 J (60 s), and the fracture mechanism changed from quasi-cleavage fracture to cleavage fracture. The decreased toughness of CGHAZ was due to the reduction of lath martensite-content, coarsening of original austenite grain, and increase and coarsening of M/A constituent. The heat input was controlled under 7 kJ cm-1 during actual welding for these steels.
基金supported from the National Natural Science Foundation of China(No.52130408)the Hunan Scientific Technology Project,China(Nos.2019RS3007,2020WK2003)the Fundamental Research Funds for the Central Universities of Central South University,China。
文摘First,strip cast samples of high strength microalloyed steel with sub-rapid solidification characteristics were prepared by simulated strip casting technique.Next,the isothermal growth of austenite grain during the reheating treatment of strip casts was observed in situ through confocal laser scanning microscope(CLSM).The results indicated that the time exponent of grains growth suddenly rise when the isothermal temperature higher than 1000℃.And the activation energy for austenite grain growth were calculated to be 538.0 kJ/mol in the high temperature region(above 1000℃)and 693.2 kJ/mol in the low temperature region(below 1000℃),respectively.Then,the kinetics model of austenite isothermal growth was established,which can predict the austenite grain size during isothermal hold very well.Besides,high density of second phase particles with small size was found during the isothermal hold at the low temperature region,leading to the refinement of austenite grain.After isothermal hold at different temperature for 1800 s,the bainite transformation in microalloyed steel strip was also observed in situ during the continuous cooling process.And growth rates of bainite plates with different nucleation positions and different prior austenite grain size(PAGS)were calculated.It was indicated that the growth rate of the bainite plate is not only related to the nucleation position but also to the PAGS.
文摘Dry sliding friction and wear test of Nb containing low carbon microalloyed steel was carried out at room temperature,and the effect of Nb on the wear behavior of the steel,as welll as the mechanism was studied.Scanning electron microscopy(SEM) and energy dispersive spectrometry(EDS) were employed to analyze the morphology and composition of the worn surface,and the structure evolution of the plastic deformation layer.The carbide content and type in the steel were analyzed by the electrolytic extraction device and X-ray diffraction(XRD).The experimental results demonstrate that the addition of 0.2% Nb can refine the grain and generate Nb C to improve the wear resistance of the steel.By enhancing the load and speed of wear experiment,the wear mechanism of the test steel with 0.2% Nb changes from slight oxidation wear to severe adhesion wear and oxidation wear.Compared with the load,the increase in the rotation speed exerts a greater influence on the wear of the test steel.
文摘The loading capacity of ultralarge container ships has reached 24000 TEUs so far,and to ensure the safe operation of these ships,the maxmium thickness of crack arrest steel used in the upper deck areas reaches 100 mm,and crack arrest toughness(K_(ca))needs to be>8000 N/mm^(3)/2.The EH47 steel was employed to study the effect of Nb on the phase transformation of supercooled austenite in the continuous cooling process after rolling and the effect of Nb on microstructure and mechanical properties of the crack arrest steel plate.It was found that the addition of 0.02%Nb can inhibit the ferrite transformation,improve the steel plate strength,and reduce the strength inhomogeneity in the thickness direction.Industrial production of 100 mm-thick EH47 was carried out based on the function of Nb in EH47 steel,and the test results reveal that high-strength EH47 shipbuilding plates with high toughness,excellent fracture and crack arrest toughness,and good welding properties can be produced using Nb-microalloyed composition design and the thermal mechanical control process(TMCP);furthermore,the value of the crack arrest toughness reached 9450.7 N/mm^(3/2) at-10℃.
基金supported by the National Natural Science Foundation of China(No.U1960202).
文摘The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy.
文摘The microstructure and the characteristics of the inclusions embedded in ferrite matrix in simulated coarse-grain heat affected zone (CGHAZ) of a Ti-Zr-treated high strength low alloy (HSLA) steel have been investigated. The microstructure of the simulated CGHAZ dominantly consisted of intragranular acicular ferrite (IAF) combining with a small amount of polygonal ferrite (PF), widmanst tten ferrite (WF), bainite ferrite (BF), pearlite and martensite-austenite (M-A) islands. The PF, WF and BF were generally observed at the prior austenite grain boundaries and the interlocking acicular ferrite was usually found intragranularly. It was found that the inclusions were composed of Ti2O3, ZrO2, Al2O3 locating at the center of the particles and MnS lying on the surface layer of the inclusions. The intragranular complex inclusions promoted the acicular ferrite formation and the refinement of microstructure whilst those at prior austenite grain boundaries caused PF formation on the inclusions. The simulated CGHAZ consisting of such complicated microstructure exhibited desired mechanical properties.
基金This work was supported by the National Natural Science Foundation of China (No. 50275094).
文摘The microstractural evolution of microalloyed steel during hot forging process was investigated using physical simulation experiments. The dynamic recrystallized fraction was described by modifying Avrami's equation, the parameters of which were determined by single hit compression tests. Double hit compression tests were performed to model the equation describing the static recrystallized fraction, and the obtained predicted values were in good agreement with the measured values. Austenitic grain growth was modeled as: Dinc^5 = D0^5 + 1.6 × 10^32t·exp ( -716870/RT ) using isothermal tests. Furthermore, an equation describing the dynamic recrystallized grain size was given as Ddyn=3771·Z^-0.2. The models of microstructural evolution could be applied to the numerical simulation of hot forging.
基金supported by the National Natural Science Foundation of China (No.50734004)
文摘The microstructural features and grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels were investigated using optical microscopy, scanning electron microscopy, and electron backscattering dif- fraction. The coarse-grained region of the heat-affected zone consists of predominantly bainite and a small proportion of acicular ferrite. Bainite packets are separated by high angle boundaries. Acicular ferrite laths or plates in the coarse-grained region of the heat-affected zone formed prior to bainite packets partition austenite grains into many smaller and separate areas, resulting in fine-grained mixed microstruc- tures. Electron backscattefing diffraction analysis indicates that the average crystallographic grain size of the coarse-grained region of the heat-affected zone reaches 6-9 μm, much smaller than that of anstanite grains.
文摘The influence of microalloying additions on the mechanical properties of a low-carbon cast steel containing combinations of V, Nb, and Ti in the as-cast condition was evaluated. Tensile and hardness test results indicated that good combinations of strength and ductility could be achieved by V and Nb additions. While the yield strength and UTS (ultimate tensile strength) increased up to the range of 378-435 MPa and 579- 590 MPa, respectively in the microalloyed heats, their total elongation ranged from 18% to 23%. The presence of Ti, however, led to some reduction in the strength. Microstructural studies including scanning electron microscopy (SEM) and optical microscopy revealed that coarse TiN particles were responsible for this behavior. The Charpy impact values of all compositions indicated that microalloying additions significantly decreased the impact energy and led to the dominance of cleavage facets on the fracture surfaces. It seems that the increase in the hardness of coarse ferrite grains due to the precipitation hardening is the main reason for brittle fracture.
文摘A dilatometer was used to study the kinetics of bainite-to-austenite transformation in low carbon microalloyed steel with the initial microstructure of bainite during the continuous reheating process. The bainite-to-austenite trans- formation was observed to take place in two steps at low heating rate. The first step is the dissolution of bainite, and the second one is the remaining bainite-to-austenite transformation controlled by a dissolution process. The calculation result of the kinetics of austenite formation shows that the two steps occur by diffusion at low heating rate. However, at high heating rate the bainite-to-austenite transformation occurs in a single step, and the process is mainly dominated by shear. The growth rate of austenite reaches the maximum at about 835℃ at different heating rates and the growth rate of austenite as a function of temperature increases with the increase in heating rate.
文摘Transmission electron microscopy (TEM) and physics-chemical phase analysis were employed to investigate the precipitates in high strength steels microalloyed with Ti produced by compact strip production (CSP). It was seen that precipitates in Ti microalloyed steels mainly included TiN, Ti4C2S2, and TiC. The size of TiN particles varied from 50 to 500 nm, and they could precipitate during or before soaking. The Ti4C2S2 with the size of 40-100 nm might precipitate before rolling, and the TiC particles with the size of 5-50 nm precipitated heterogeneously. High Ti content would lead to the presence of bigger TiC particles that precipitated in austenite, and by contrast, TiC particles that precipitated in ferrite and the transformation of austenite to ferrite was smaller. They were less than 30 nm and mainly responsible for precipitate strengthening. It should be noted that the TiC particles in higher Ti content were generally smaller than those in the steel with a lower Ti content.
文摘The investigation on the behavior of RE in microalloyed steel containing Nb and Ti indicates RE still have the effect of purifying molten steel and metamorphose inclusions even when the composition of S is pretty low(S<0 003%). The optimum performance of the experimental steels can be obtained when w RE / w O+S is controlled around 3 9. The content of solid solution RE can reach 1×10 -5 ~1×10 -4 order of magnitude in ultra low sulfur steel. The additions of RE can reduce the segregation of S and P at the grain boundary, delay the dynamic recrystallization, refine the grain and second phase particles, and promote the precipitation of (Nb, Ti)(C, N). RE also exhibit the microalloying effect in steel.
文摘The influence of rare earths on the behavior of precipitation of 14MnNb,X60 and 10MnV steels was studied by STEM, XRD, ICP and thermal simulation method. The main carbonitride precipitates are Nb(C, N),(Nb, Ti)(C, N)and V(C, N). In austenite RE delays the beginning of precipitation, and decreases the rate of precipitation. In ferrite RE promotes precipitation and increases the amount of equilibrium carbonitride precipitation. RE can make precipitates fine, globular and dispersed in the microalloyed steels. With the increase of the amount of RE in steel, the amount of precipitation increases. The promotion effect is weakened with excessive RE. RE has only little influence on the strength of microalloyed steel, but it can improve impact toughness effectively.
文摘Grain refinement is one of the effective methods to develop new generation low carbon microalloyed steels possessing excellent combination of mechanical properties. The microstructural evolution and ferrite grain refinement at the deformation temperature of 865℃, above Ar3, with different strain rates were investigated using single pass isothermal hot compression experiments for a low carbon Nb-Ti microalloyed steel. The physical processes that occurred during deformation were discussed by observing the optical microstructure and analyzing the true stress-true strain responses. At strain rates of 0.001 and 0.01s^-1, there is no evidence of work hardening behavior during hot deformation and strain-induced transformation (SIT) leads to dynamic flow softening in flow curves. Optical microscopy observation shows that ultrafine and equiaxed ferrite with grain sizes of 2μm can be obtained by applying deformation with strain rate of 0.1 s^-1 due to SIT just after deformation. Furthermore, increasing the strain rate from 0.001 to 0.1 s^-1 reduces both the grain size of the equiaxed ferrite and the amount of deformed ferrite.
基金supported by the National Natural Science Foundation of China(No.50527402)
文摘Ultra-fine austenite grains with size of i-3 μm were prepared in a Nb-V-Ti steel through repetitive treatment of rapid heating and quenching. A model for the growth kinetics of these ultra-fine austenite grains was successfully created through successive 2 processes, and the activation energy Q for growth was estimated to be about 693.2 kJ/mol, which directly shows the inhibition effect of microalloy elements on the growth of ultra-fine austenite grains.
基金This work was supported by the National Natural Science Foundation of China under grant Nos. 50334010 and 50271009.
文摘Microalloying element Nb in low carbon steels produced by compact strip production (CSP) process plays an important role in inhibiting recrystallization, decreasing the transformation temperature and grain refinement.With decreasing the rolling temperature, dislocations can be pinned by carbonitrides and the strength is increased. Based on the two sublattice model, with metal atom sublattice and interstitial atom sublattice,a thermodynamic model for carbonitride was established to calculate the equilibrium between matrix and carbonitride. In the steel produced by CSP, the calculation results showed that the starting temperature of precipitation of Ti and Nb are 1340℃ and 1040℃, respectively. In the range of 890-950℃, Nb rapidly precipitated. And the maximum of the atomic fraction of Nb in carbonitride was about 0.68. The morphologies and energy spectrum of the precipitates showed that (NbTi) (CN) precipitated near the dislocations. The experiment results show that Nb rapidly precipitated when the temperature was lower than 970℃, and the atomic fraction of Nb in carbonitride was about 60%-80%. The calculation results are in agreement with the experiment data. Therefore the thermodynamic model can be a useful assistant tool in the research on the precipitates in the low carbon steels produced by CSP.
基金the National Natural Science Foundation of China(No.50474086,50334010)the Program for New Century Excellent Talents in Universities(No.NCET-04-0278)of the Ministry of Education
文摘The dynamic recrystallization (DRX) behavior of Nb-Ti microalloyed steels was investigated by isothermal single compression tests in the temperature range of 900-1 150 ℃ at constant strain rates of 0.1-5 s^-1. DRX was retarded effectively at low temperature due to the onset of dynamic precipitation of Nb and Ti carbonitrides, resulting in higher values of the peak strain. An expression was developed for the activation energy of deformation as a function of the contents of Nb and Ti in solution as well as other alloying elements. A new value of corrective factor was determined and applied to quantify the retardation produced by increase in the amount of Nb and Ti dissolved at the reheating temperature. The ratio of critical strain to peak strain decreases with increasing equivalent Nb content. In addition, the effects of Ti content and deformation conditions on DRX kinetics and steady state grain size were determined. Finally, the kinetics of dynamic precipitation was determined and effect of dynamic precipitation on the onset of DRX was clarified based on the comparison between precipitate pinning force and recrystallization driving force.
文摘The effects of chemical composition and cooling rate after solidication on the grain coarsening temperature,T_(GC),of the V-Ti-N microalloyed steels have been investigated.It is shown that the T_(GC) may be obviously raised by adding even a little Ti to the base steel so as to pre- cipitate a great deal of fine Ti-bearing particles of about 10 nm.The T_(GC) does not increase with the cooling rate,as it is over a certain critical value.The T_(GC) is insensitive to any varia- tion of N content at simulated cooling condition of 150 mm continuous cast slab.The T_(GC) may be dropped down about 100℃ by adding 0.33 wt-%Mo to the steels.The sensitivi- ty of T_(GC) to cooling condition relates to the Ti and V contents.
基金financially supported by the China National Funds for Distinguished Young Scientists (No. 51325401)the International Thermonuclear Experimental Reactor (ITER) Program Special Project (No. 2014GB125006)+1 种基金the Major State Basic Research Development Program of China (No. 2014CB046805)the Natural Science Foundation of Tianjin City (No. 14JCZDJC38700)
文摘The effect of acicular ferrite (AF) on banded structures in low-carbon microalloyed steel with Mn segregation during both iso- thermal transformation and continuous cooling processes was studied by dilatometry and microscopic observation. With respect to the iso- thermal transformation process, the specimen isothermed at 550℃ consisted of AF in Mn-poor bands and martensite in Mn-rich bands, whereas the specimen isothermed at 450℃ exhibited two different morphologies of AF that appeared as bands. At a continuous cooling rate in the range of 4 to 50℃/s, a mixture of AF and martensite formed in both segregated bands, and the volume fraction of martensite in Mn-rich bands was always higher than that in Mn-poor bands. An increased cooling rate resulted in a decrease in the difference of martensite volume fraction between Mn-rich and Mn-poor bands and thereby leaded to less distinct microstrucmral banding. The results show that Mn segregation and cooling rate strongly affect the formation of AF-containing banded structures. The formation mechanism of microstructural banding was also discussed.
基金Item Sponsored by High Technology Development Program of China (863) (2001AA332020)National Natural Science Foundation of China (50271015)
文摘Using Gleeble-1500 system, the influence of holding time on bainite transformation in deformed niobium microalloyed steel during continuous cooling was analyzed, and the carbides in upper bainite were also systematically researched. The results show that the occurrence of the static recrystallization decreases the amount of bainite with an increase in the holding time and the emergence of retained austenite (RA) with the longer holding time. Two types of carbides were observed in upper bainite with regard to their precipitation sites. They either existed between the bainite ferrite laths or co-existed with RA. The formation mechanism of two kinds of carbides was analyzed by combining TEM micrographs with the model.