Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively i...Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively integrate grinding and surface hardening. Experimental studies were carried out on grinding hardening of non-quenched and tempered steel. Through grinding experiments with variable depths of cut and feeding rate,the variation in the depth of the hardening layer was studied and the microstructure of the hardening zone of the test pieces was subsequently ana-lyzed. In the end,the hardening effect of non-quenched and tempered steel was compared with that of 40Cr steel,which revealed the superiority of non-quenched and tempered steel in grinding hardening technology.展开更多
The 8.8 grade non-quenched and tempered bolt steel was studied according to the process conditions of wire rod plant and customer requirments.Three types of experimental steel grades were selected.10MnSiTi Nb and 20Mn...The 8.8 grade non-quenched and tempered bolt steel was studied according to the process conditions of wire rod plant and customer requirments.Three types of experimental steel grades were selected.10MnSiTi Nb and 20Mn2VTi(N) were chosen as the formal steel after several experimemts.展开更多
The effect of tempering temperature on the microstrocture and precipitating evolution and the resultant mechanical properties of newly developed high-strength microalloyed steel plate was investigated by optical micro...The effect of tempering temperature on the microstrocture and precipitating evolution and the resultant mechanical properties of newly developed high-strength microalloyed steel plate was investigated by optical microscopy (OM) and transmission electron microscopy (TEM). The steel mainly consists of fine lath martensite and lower bainite. The width of the martensitic laths in as-hot-rolled state is about 120 nm,and increases from 120 nm to 150 nm and 180 nm after tempering at 200 ℃ and 250℃ for 2 h respectively with no change in its morphology. Of special interest is the phenomenon that both tensile strength and impact toughness of the steel plate decrease with the increase of the tempering temperature, which might be attributed to the combination of lath martensite broadening and the coarsening of needle-like carbides located on the boundaries of lath martensite and within bainitic ferrite. It is suggested that the existence of the complex carbonitride larger than 100 nm in bainitic ferrite is one of the reasons.展开更多
Coupled with hot-continuous rolling technology and based on the calculation of the finishing rolling impact work in the non-quenched and tempered Si-Mn steel, the calculations of the finishing rolling impact work in t...Coupled with hot-continuous rolling technology and based on the calculation of the finishing rolling impact work in the non-quenched and tempered Si-Mn steel, the calculations of the finishing rolling impact work in the alloying non-quenched and tempered steel with the elements of Cr, Ni, Mo, W, Cu, V, Nb and Ti are studied with the covalent electron number nA of the strongest bond in alloying phases, the smallest electron density difference ?ρ of phase interfaces, and the number of atom states σ (σ′) which keep the interface electron density continuous. The calculated results show that the finishing rolling impact work of the alloying non-quenched and tempered steel intensely depends on strengthening mechanisms. The solution strengthening, interface strengthening, precipita- tion strengthening of pearlite, and dispersion strengthening will result in the decrease of the finishing rolling impact work; the refinement strengthening, the precipitation strength- ening of V, Nb and Ti in α-Fe-C-V(Nb, Ti), and the residual austenite containing Ni on the boundary of α-Fe-C-Ni will increase the impact work; and the increments or decrements can be calculated with nA, ?ρ, σ (σ′) and weights of alloying elements. The calculation formulas of the finishing rolling impact work in this paper are intergraded with the sug- gested ones of the finishing rolling tensile strength, yield strength, and elongation of the non-quenched and tempered steel. The calculated results agree well with the measured ones.展开更多
Based on the hot-continuous rolling technology, the finishing rolling impact work α k of the non-quenched and tempered Si-Mn steel is theoretically calculated with the covalent electron number nA of the strongest bon...Based on the hot-continuous rolling technology, the finishing rolling impact work α k of the non-quenched and tempered Si-Mn steel is theoretically calculated with the covalent electron number nA of the strongest bond in alloying phases, and the smallest interface electron density difference Δρ of alloying phase interface and the number of atom states σ which keep the interface electron density continuous. Calculations show that the solution strengthening, the precipitation strengthening, and the interface strengthening will result in the decrease of the finishing rolling impact work α k, and the effects of the number of atom states σ which keep the interface electron density continuous on the finishing rolling impact work α k are different. Taking the impact work and the number of atom states σ 0 keeping the electron density continuous of the phase interface α-Fe/α-Fe-C between α-Fe and α-Fe-C as reference values, the impact work of the interface will increase when σ of some interface is larger than σ 0; otherwise, the impact will decrease. Therefore, the finishing rolling impact work α k can be calculated with the impact value of the refined α-Fe matrix and the influence amounts caused by the solution strengthening, the precipitation strengthening, the interface strengthening, and the number of atom states σ which keep the interface electron density continuous. The calculated results agree well with the measured ones. In this paper, the effect of S on the impact work is also discussed.展开更多
Based on optical microscope(OM),transmission electron microscope(TEM) and mechanical performance measurement,the microstructures and mechanical properties of Nb-V micro-alloying non-quenched and tempered steels have b...Based on optical microscope(OM),transmission electron microscope(TEM) and mechanical performance measurement,the microstructures and mechanical properties of Nb-V micro-alloying non-quenched and tempered steels have been studied.The results showed that the microstructure consists of ferrite and pearlite,in which there exists a lot of intragranular ferrite.Niobium carbide is the main form of carbonitrides,Nb-enriched carbonitrides refine grains,V-enriched carbonitrides have precipitation strengthening effect,which promotes the toughness of the studied steel.The mechanical properties for steels 1,2 and 3 have met the standards required by high load automobile crankshaft,in which the comprehensive property for No.2 is the best.展开更多
Elongated MnS inclusions in rolled non-quenched and tempered steel tend to cause the mechanical anisotropy of steel,deteriorate the mechanical properties and degrade the quality and service life of the steel products....Elongated MnS inclusions in rolled non-quenched and tempered steel tend to cause the mechanical anisotropy of steel,deteriorate the mechanical properties and degrade the quality and service life of the steel products.To reveal the mechanisms of morphological transformation of strip-shaped MnS inclusions during isothermal heating,the effects of heat treatment time and temperature on the morphology,number density and size distribution of elongated MnS inclusions were systematically studied and discussed.A diffusion couple experiment was also conducted to clarify the diffusion mode of MnS inclusions.The experimental results showed that with the increase in isothermal heating time(from 0 to 10 h at 1473 K)and temperature(from 1173 to 1573 K for 3.0 h),the number density and average aspect ratio of MnS inclusions generally showed an increase and decrease trend,respectively,while the area fraction remained stable and only slightly fluctuated around 0.4%.In the diffusion couple,after the isothermal heating at 1473 K for 3.0 h,the elements Mn and S in the steel near the steel-MnS interface were very stable without any concentration gradient.The morphology change sequence of the elongated MnS inclusions in the rolled non-quenched and tempered steel during the isothermal heating was strip→cylinderization→spindle→spheroidization.Relationship between the diameter of MnS inclusion and the spacing between two MnS inclusions after splitting,and the fitting goodness of different n values under different experimental time and temperature confirmed that the driving force for the transformation of MnS inclusions during the isothermal heating was surface diffusion,instead of volume diffusion.展开更多
An overview of the current research status and control methods of MnS in non-quenched and tempered steel was provided.As a low-melting plastic inclusion,the morphology and distribution of MnS were influenced by variou...An overview of the current research status and control methods of MnS in non-quenched and tempered steel was provided.As a low-melting plastic inclusion,the morphology and distribution of MnS were influenced by various production processes.Therefore,control of MnS is a systematic problem that must be integrated into the entire production process.Based on the production process,the factors affecting the morphology and distribution of MnS in steel were introduced.The effects of oxygen activity,manganese,sulfur,and some alloys on MnS inclusion precipitation were summarized,mainly including MnS modification treatment and oxygen-sulfide composite precipitation control.It is believed that MnS precipitates during the solidification process of steel,and controlling the solidification cooling rate could effectively regulate the size and morphology of MnS,avoiding the precipitation of II-MnS.Additionally,by changing the deformation rate,deformation amount,deformation temperature during the hot deformation process,and heating time and temperature during heat treatment,the distribution and morphology of MnS could be improved.Through the fine control of the above process parameters,the number of II-MnS in steel could be effectively reduced,and their morphology could be improved,thereby enhancing the performance of non-quenched and tempered steel and promoting its wider application.Furthermore,applying laboratory research results to industrial production is an important direction for future research efforts in this field.展开更多
The stability of ultra-fine microstructure during tempering at 650 degreesC was investigated on a Nb-containing steel. The steel had undergone 5 passes controlled rolling, then was relaxed lair cooled) to 730 degreesC...The stability of ultra-fine microstructure during tempering at 650 degreesC was investigated on a Nb-containing steel. The steel had undergone 5 passes controlled rolling, then was relaxed lair cooled) to 730 degreesC: and cooled in water. The evolution of microstructure was that, in early stage of tempering, no obvious change was detected by means of optical microscopy while dislocation cells were formed inside bainitic laths. With further tempering, bainitic laths started to coalesce in some regions. Finally, polygonal ferrite was formed while hardness decreased dramatically. Some samples taken from the same primary plate were reheated at 930 degreesC for 0.5 h followed by quenching into water before tempering. Despite their lower original hardness, the reheated samples softened Faster during tempering. Ferrite was quickly formed in the reheated samples. These results indicate that the evolution of microstructures towards equilibrium during tempering of the steel is mainly determined by whether dislocations are pinned rather than the dislocation density.展开更多
An industrial experiment was conducted at a certain steel plant in China to compare and analyze the effects of Ca treatment and Mg–Ca treatment on inclusions in 45MnVS non-quenched and tempered steel. Through scannin...An industrial experiment was conducted at a certain steel plant in China to compare and analyze the effects of Ca treatment and Mg–Ca treatment on inclusions in 45MnVS non-quenched and tempered steel. Through scanning electron microscopy-energy dispersive scanning analysis of the morphology and composition of inclusions, as well as Aspex quantitative analysis of their quantity, type and size, the formation mechanism of MnS–oxide (MnS inclusions with oxide cores) was intensively studied. The influence of sulfide morphology on the impact properties of steel was also analyzed. The results show that the quantity percentage of spindle-shaped sulfides in Ca-treated steel is 19.99%, and that in Mg–Ca-treated steel is 35.38%. Compared with Ca-treated steel, there are more MnS–oxide inclusions in Mg–Ca-treated steel. Controlling the content of Ca and Mg in the oxide core of MnS–oxide inclusion above 10 wt.% and the area ratio below 5 would contribute to the formation of spindle-shaped inclusions after rolling. The mismatch between MnS and oxides decreases with the increase in MgO content in the oxides, which is beneficial to nucleation and precipitation of MnS with this type of oxides as the core. Under the same deformation conditions, the size of sulfide does not affect its aspect ratio. Under the experimental conditions, the inclusion containing a certain amount of MgO can enhance its sulfur capacity, facilitating the formation of composite sulfides. The transverse impact energy of Ca-treated steel is 25.785 J, and that of Mg–Ca-treated steel is 32.119 J. Compared with the traditional Ca-treatment, Mg–Ca treatment can increase the number of spindle-shaped sulfides in the steel, thereby improving the transverse impact toughness of the steel and reducing the anisotropy of the mechanical properties of the material.展开更多
To clarify the deformation behavior of MnS inclusions in a non-quenched and tempered steel at three different positions (edge, 1/2 radius and center) in the cross-section of the billet in the course of hot rolling, is...To clarify the deformation behavior of MnS inclusions in a non-quenched and tempered steel at three different positions (edge, 1/2 radius and center) in the cross-section of the billet in the course of hot rolling, isothermal compression experiments were performed under the deformation temperature range from 1073 to 1473 K, the reduction rates from 25% to 75% and the strain rates from 0.01 to 10 s^(−1). The variations of deformability features (i.e., aspect ratios, size distributions, and morphologies) of MnS inclusions with those isothermal compression parameters were revealed. The evaluation of the probable maximum aspect ratio of MnS inclusions at the three different positions in the cross-section of the billet after hot rolling was examined using the statistical analysis of extreme values. Results showed that the number densities of MnS inclusions at three different positions (edge, 1/2 radius and center) in the cross-section of the steel billet only fluctuated slightly when the deformation parameters varied in the isothermal compression, while the average inclusion aspect ratios in all cases generally have a negative correlation with the deformation temperature and positive correlations with the reduction ratio and the strain rate. Statistical analysis reveals that larger inclusions deform more easily during hot rolling. The effect of rolling temperature on the extreme value of the aspect ratio of inclusions is the smallest, while the effects of initial size, reduction ratio and strain rate are more significant.展开更多
基金Projects JH03-001 supported by the High and New Technology Foundation of Jiangsu High School2006B009 by the Science Foundation of China University ofMining & Technology
文摘Grinding hardening is a new technology of hardening steel piece surfaces with grinding heat generated in the grinding process instead of with a high or medium frequency induction heating method,which can effectively integrate grinding and surface hardening. Experimental studies were carried out on grinding hardening of non-quenched and tempered steel. Through grinding experiments with variable depths of cut and feeding rate,the variation in the depth of the hardening layer was studied and the microstructure of the hardening zone of the test pieces was subsequently ana-lyzed. In the end,the hardening effect of non-quenched and tempered steel was compared with that of 40Cr steel,which revealed the superiority of non-quenched and tempered steel in grinding hardening technology.
文摘The 8.8 grade non-quenched and tempered bolt steel was studied according to the process conditions of wire rod plant and customer requirments.Three types of experimental steel grades were selected.10MnSiTi Nb and 20Mn2VTi(N) were chosen as the formal steel after several experimemts.
文摘The effect of tempering temperature on the microstrocture and precipitating evolution and the resultant mechanical properties of newly developed high-strength microalloyed steel plate was investigated by optical microscopy (OM) and transmission electron microscopy (TEM). The steel mainly consists of fine lath martensite and lower bainite. The width of the martensitic laths in as-hot-rolled state is about 120 nm,and increases from 120 nm to 150 nm and 180 nm after tempering at 200 ℃ and 250℃ for 2 h respectively with no change in its morphology. Of special interest is the phenomenon that both tensile strength and impact toughness of the steel plate decrease with the increase of the tempering temperature, which might be attributed to the combination of lath martensite broadening and the coarsening of needle-like carbides located on the boundaries of lath martensite and within bainitic ferrite. It is suggested that the existence of the complex carbonitride larger than 100 nm in bainitic ferrite is one of the reasons.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 50471022).
文摘Coupled with hot-continuous rolling technology and based on the calculation of the finishing rolling impact work in the non-quenched and tempered Si-Mn steel, the calculations of the finishing rolling impact work in the alloying non-quenched and tempered steel with the elements of Cr, Ni, Mo, W, Cu, V, Nb and Ti are studied with the covalent electron number nA of the strongest bond in alloying phases, the smallest electron density difference ?ρ of phase interfaces, and the number of atom states σ (σ′) which keep the interface electron density continuous. The calculated results show that the finishing rolling impact work of the alloying non-quenched and tempered steel intensely depends on strengthening mechanisms. The solution strengthening, interface strengthening, precipita- tion strengthening of pearlite, and dispersion strengthening will result in the decrease of the finishing rolling impact work; the refinement strengthening, the precipitation strength- ening of V, Nb and Ti in α-Fe-C-V(Nb, Ti), and the residual austenite containing Ni on the boundary of α-Fe-C-Ni will increase the impact work; and the increments or decrements can be calculated with nA, ?ρ, σ (σ′) and weights of alloying elements. The calculation formulas of the finishing rolling impact work in this paper are intergraded with the sug- gested ones of the finishing rolling tensile strength, yield strength, and elongation of the non-quenched and tempered steel. The calculated results agree well with the measured ones.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 50471022).
文摘Based on the hot-continuous rolling technology, the finishing rolling impact work α k of the non-quenched and tempered Si-Mn steel is theoretically calculated with the covalent electron number nA of the strongest bond in alloying phases, and the smallest interface electron density difference Δρ of alloying phase interface and the number of atom states σ which keep the interface electron density continuous. Calculations show that the solution strengthening, the precipitation strengthening, and the interface strengthening will result in the decrease of the finishing rolling impact work α k, and the effects of the number of atom states σ which keep the interface electron density continuous on the finishing rolling impact work α k are different. Taking the impact work and the number of atom states σ 0 keeping the electron density continuous of the phase interface α-Fe/α-Fe-C between α-Fe and α-Fe-C as reference values, the impact work of the interface will increase when σ of some interface is larger than σ 0; otherwise, the impact will decrease. Therefore, the finishing rolling impact work α k can be calculated with the impact value of the refined α-Fe matrix and the influence amounts caused by the solution strengthening, the precipitation strengthening, the interface strengthening, and the number of atom states σ which keep the interface electron density continuous. The calculated results agree well with the measured ones. In this paper, the effect of S on the impact work is also discussed.
文摘Based on optical microscope(OM),transmission electron microscope(TEM) and mechanical performance measurement,the microstructures and mechanical properties of Nb-V micro-alloying non-quenched and tempered steels have been studied.The results showed that the microstructure consists of ferrite and pearlite,in which there exists a lot of intragranular ferrite.Niobium carbide is the main form of carbonitrides,Nb-enriched carbonitrides refine grains,V-enriched carbonitrides have precipitation strengthening effect,which promotes the toughness of the studied steel.The mechanical properties for steels 1,2 and 3 have met the standards required by high load automobile crankshaft,in which the comprehensive property for No.2 is the best.
基金The current study was supported by the National Natural Science Foundation of China(Grant No.52074198).
文摘Elongated MnS inclusions in rolled non-quenched and tempered steel tend to cause the mechanical anisotropy of steel,deteriorate the mechanical properties and degrade the quality and service life of the steel products.To reveal the mechanisms of morphological transformation of strip-shaped MnS inclusions during isothermal heating,the effects of heat treatment time and temperature on the morphology,number density and size distribution of elongated MnS inclusions were systematically studied and discussed.A diffusion couple experiment was also conducted to clarify the diffusion mode of MnS inclusions.The experimental results showed that with the increase in isothermal heating time(from 0 to 10 h at 1473 K)and temperature(from 1173 to 1573 K for 3.0 h),the number density and average aspect ratio of MnS inclusions generally showed an increase and decrease trend,respectively,while the area fraction remained stable and only slightly fluctuated around 0.4%.In the diffusion couple,after the isothermal heating at 1473 K for 3.0 h,the elements Mn and S in the steel near the steel-MnS interface were very stable without any concentration gradient.The morphology change sequence of the elongated MnS inclusions in the rolled non-quenched and tempered steel during the isothermal heating was strip→cylinderization→spindle→spheroidization.Relationship between the diameter of MnS inclusion and the spacing between two MnS inclusions after splitting,and the fitting goodness of different n values under different experimental time and temperature confirmed that the driving force for the transformation of MnS inclusions during the isothermal heating was surface diffusion,instead of volume diffusion.
基金support from the Project funded by China Postdoctoral Science Foundation(2022M720982).
文摘An overview of the current research status and control methods of MnS in non-quenched and tempered steel was provided.As a low-melting plastic inclusion,the morphology and distribution of MnS were influenced by various production processes.Therefore,control of MnS is a systematic problem that must be integrated into the entire production process.Based on the production process,the factors affecting the morphology and distribution of MnS in steel were introduced.The effects of oxygen activity,manganese,sulfur,and some alloys on MnS inclusion precipitation were summarized,mainly including MnS modification treatment and oxygen-sulfide composite precipitation control.It is believed that MnS precipitates during the solidification process of steel,and controlling the solidification cooling rate could effectively regulate the size and morphology of MnS,avoiding the precipitation of II-MnS.Additionally,by changing the deformation rate,deformation amount,deformation temperature during the hot deformation process,and heating time and temperature during heat treatment,the distribution and morphology of MnS could be improved.Through the fine control of the above process parameters,the number of II-MnS in steel could be effectively reduced,and their morphology could be improved,thereby enhancing the performance of non-quenched and tempered steel and promoting its wider application.Furthermore,applying laboratory research results to industrial production is an important direction for future research efforts in this field.
文摘The stability of ultra-fine microstructure during tempering at 650 degreesC was investigated on a Nb-containing steel. The steel had undergone 5 passes controlled rolling, then was relaxed lair cooled) to 730 degreesC: and cooled in water. The evolution of microstructure was that, in early stage of tempering, no obvious change was detected by means of optical microscopy while dislocation cells were formed inside bainitic laths. With further tempering, bainitic laths started to coalesce in some regions. Finally, polygonal ferrite was formed while hardness decreased dramatically. Some samples taken from the same primary plate were reheated at 930 degreesC for 0.5 h followed by quenching into water before tempering. Despite their lower original hardness, the reheated samples softened Faster during tempering. Ferrite was quickly formed in the reheated samples. These results indicate that the evolution of microstructures towards equilibrium during tempering of the steel is mainly determined by whether dislocations are pinned rather than the dislocation density.
基金supported by the National Natural Science Foundation of China(Nos.52074186 and 51704200)Jiangsu province Natural Science Fund(No.BK20150336)Project sponsored by the State Key Laboratory of Refractories and Metallurgy(Wuhan University of Science and Technology)(No.G202304).
文摘An industrial experiment was conducted at a certain steel plant in China to compare and analyze the effects of Ca treatment and Mg–Ca treatment on inclusions in 45MnVS non-quenched and tempered steel. Through scanning electron microscopy-energy dispersive scanning analysis of the morphology and composition of inclusions, as well as Aspex quantitative analysis of their quantity, type and size, the formation mechanism of MnS–oxide (MnS inclusions with oxide cores) was intensively studied. The influence of sulfide morphology on the impact properties of steel was also analyzed. The results show that the quantity percentage of spindle-shaped sulfides in Ca-treated steel is 19.99%, and that in Mg–Ca-treated steel is 35.38%. Compared with Ca-treated steel, there are more MnS–oxide inclusions in Mg–Ca-treated steel. Controlling the content of Ca and Mg in the oxide core of MnS–oxide inclusion above 10 wt.% and the area ratio below 5 would contribute to the formation of spindle-shaped inclusions after rolling. The mismatch between MnS and oxides decreases with the increase in MgO content in the oxides, which is beneficial to nucleation and precipitation of MnS with this type of oxides as the core. Under the same deformation conditions, the size of sulfide does not affect its aspect ratio. Under the experimental conditions, the inclusion containing a certain amount of MgO can enhance its sulfur capacity, facilitating the formation of composite sulfides. The transverse impact energy of Ca-treated steel is 25.785 J, and that of Mg–Ca-treated steel is 32.119 J. Compared with the traditional Ca-treatment, Mg–Ca treatment can increase the number of spindle-shaped sulfides in the steel, thereby improving the transverse impact toughness of the steel and reducing the anisotropy of the mechanical properties of the material.
基金supported by the National Natural Science Foundation of China(Grant Nos.52074198,52374342 and U21A20113)also supported by the Department of Science and Technology of Hubei Province(Grant No.2023AFB603 and No.2023DJC140).
文摘To clarify the deformation behavior of MnS inclusions in a non-quenched and tempered steel at three different positions (edge, 1/2 radius and center) in the cross-section of the billet in the course of hot rolling, isothermal compression experiments were performed under the deformation temperature range from 1073 to 1473 K, the reduction rates from 25% to 75% and the strain rates from 0.01 to 10 s^(−1). The variations of deformability features (i.e., aspect ratios, size distributions, and morphologies) of MnS inclusions with those isothermal compression parameters were revealed. The evaluation of the probable maximum aspect ratio of MnS inclusions at the three different positions in the cross-section of the billet after hot rolling was examined using the statistical analysis of extreme values. Results showed that the number densities of MnS inclusions at three different positions (edge, 1/2 radius and center) in the cross-section of the steel billet only fluctuated slightly when the deformation parameters varied in the isothermal compression, while the average inclusion aspect ratios in all cases generally have a negative correlation with the deformation temperature and positive correlations with the reduction ratio and the strain rate. Statistical analysis reveals that larger inclusions deform more easily during hot rolling. The effect of rolling temperature on the extreme value of the aspect ratio of inclusions is the smallest, while the effects of initial size, reduction ratio and strain rate are more significant.