The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph...The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios.展开更多
In this study,we carried out a comparative study of two different numerical strategies for the modeling of the biogeochemical processes in microbially induced calcite precipitation(MICP)process.A simplified MICP model...In this study,we carried out a comparative study of two different numerical strategies for the modeling of the biogeochemical processes in microbially induced calcite precipitation(MICP)process.A simplified MICP model was used,which is based on the mass transport theory.Two numerical strategies,namely the operator splitting(OS)and the global implicit(GI)strategies,were adopted to solve the coupled reactive mass transport problems.These two strategies were compared in the aspects of numerical accuracy,convergence property and computational efficiency by solving the presented MICP model.To look more into the details of the model,sensitivity analysis of some important modeling parameters was also carried out in this paper.展开更多
Lateritic soils are frequently utilised in tropical areas of the developing world as an engineering material in the construction of rural earth roads, usually in the form of engineered natural surface (ENS) roads. The...Lateritic soils are frequently utilised in tropical areas of the developing world as an engineering material in the construction of rural earth roads, usually in the form of engineered natural surface (ENS) roads. The heavy, seasonal rainfalls common to the tropics results in ENS roads becoming quickly saturated with rainwater, and no longer accessible to motorised transportation. Microbially induced calcite precipitation (MICP) has been successfully used as a treatment process to decrease the permeability of clean, cohesionless sands by studies trying to impede the movement of groundwater, and any pollutants they may contain. In order to see if MICP treatment can also reduce the susceptibility of ENS road lateritic soils to rainwater saturation, this study has treated a Brazilian sample extracted from an ENS road in Espirito do Santo, Brazil, using the MICP bacterium Sporosarcina pasteurii contained within a urea-calcium chloride solution inoculum. Investigation, by means of a Rowe cell, of the post-treatment permeability, to untreated control samples, has shown an average decrease in the vertical coefficient of permeability of 83%, from 1.15 × 10-7 m/s for the untreated control samples, to 1.92 × 10-8 m/s in treated samples.展开更多
Loess disintegration can lead to geotechnical engineering problems,e.g.,slope erosion,wetting-induced landslide,and hydroconsolidation.Microbially induced calcite precipitation(MICP)technique is a potential loess rein...Loess disintegration can lead to geotechnical engineering problems,e.g.,slope erosion,wetting-induced landslide,and hydroconsolidation.Microbially induced calcite precipitation(MICP)technique is a potential loess reinforcing method.This study investigated the physical-mechanical properties of MICP-treated loess and then explored the mechanism of loess modification by MICP.Here,loess first underwent MICP treatment,i.e.,mixing loess with Sporosarcina pasteurii and cementation solution(CS).Then,the effects of the CS concentration(0.2,0.6,0.8,and 1 M)on the physical and mechanical properties of the MICP-treated loess were tested.Finally,the static contact angle test,scanning electron microscopy(SEM),and X-ray diffractometry(XRD)were conducted to study the mechanism of MICP treatment on loess.Results showed the following property changes of loess after MICP treatment:the liquid limit decreased by 1.7%,the average particle size increased from 6 to 47μm,the specific gravity decreased from 2.65 to 2.43,the unconfined compressive strength increased from 37 to 71 k Pa,and the disintegration time increased from 10 to 25 min.Besides,the shear strength also increased,and the shear strength parameters(cohesion c and internal friction angle?)varied with the CS concentration.The static contact angle tests indicated that the water absorption ability of loess was reduced after MICP treatment.SEM and XRD results verified that the CaCO_(3)from MICP was attributed to the above results.The above findings explained the mechanism of MICP treatment of loess:the CaCO_(3)coats and cements the particles,and fills the pores of loess,improving the strength and water stability of loess.展开更多
Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e.allergies a...Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e.allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens.The present study evaluates the feasibility of microbially induced calcium carbonate precipitation(MICP)technique to mitigate wind-induced erosion of calcareous desert sand(Thar desert of Rajasthan province in India). The temperature during biotreatment was kept at 36℃ to stimulate the average temperature of the Thar desert. The spray method was used for bioaugmentation of Sporosarcina(S.) pasteurii and further treatment using chemical solutions. The chemical solution of 0.25 pore volume was sprayed continuously up to 5 d, 10 d, 15 d, and 20 d, using two different concentration ratios of urea and calcium chloride dihydrate viz 2:1 and 1:1. The biotreated samples were subjected to erosion testing(in the wind tunnel) at different wind speeds of 10 m/s, 20 m/s, and 30 m/s. The unconfined compressive strength of the biocemented crust was measured using a pocket penetrometer. The variation in calcite precipitation and microstructure(including the presence of crystalline minerals) of untreated as well as biotreated sand samples were determined through calcimeter, scanning electron microscope(SEM), and energydispersive X-ray spectroscope(EDX). The results demonstrated that the erosion of untreated sand increases with an increase in wind speeds. When compared to untreated sand, a lower erosion was observed in all biocemented sand samples, irrespective of treatment condition and wind speed. It was observed that the sample treated with 1:1 cementation solution for up to 5 d, was found to effectively resist erosion at a wind speed of 10 m/s. Moreover, a significant erosion resistance was ascertained in15 d and 20 d treated samples at higher wind speeds. The calcite content percentage, thickness of crust,bulk density, and surface strength of biocemented sand were enhanced with the increase in treatment duration. The 1:1 concentration ratio of cementation solution was found effective in improving crust thickness and surface strength as compared to 2:1 concentration ratio of cementation solution. The calcite crystals formation was observed in SEM analysis and calcium peaks were observed in EDX analysis for biotreated sand.展开更多
It is difficult to collect and characterise well-preserved samples of weakly-cemented granular rocks as conventional sampling techniques often result in destruction of the cementation.An alternative approach is to pre...It is difficult to collect and characterise well-preserved samples of weakly-cemented granular rocks as conventional sampling techniques often result in destruction of the cementation.An alternative approach is to prepare synthetic geomaterials to match required specifications.This paper introduces microbially induced carbonate precipitation(MICP)as a method to reliably deliver artificiallycemented specimens with customised properties,closely resembling those of soft carbonate sandstones.The specimens are generated from materials with two highly different particle size distributions(PSDs)to access a range of achievable combinations of strengths and porosities.The MICP parameters are kept constant across all samples to obtain similar calcium carbonate characteristics(size of individual crystals,type,etc.),while injected volume is varied to achieve different cementation levels.Although uniform cementation of very coarse sands has been considered very difficult to achieve,the results show that both the fine and coarse sand specimens present high degrees of uniformity and a good degree of repeatability.The unconfined compressive strengths(UCSs)(less than 3000 kPa)and porosities(0.25e0.4)of the artificial specimens fall in the same range of values reported for natural rocks.The strength gainwas greater in the fine sand than that in the coarse sand,as the void size in the latter was significantly larger compared to the calcium carbonate crystals’size,resulting in precipitation on less effective locations,away from contacts between particles.The strengths and porosities obtained for the two sands in this work fall within ranges reported in the literature for natural soft rocks,demonstrating theMICP technique is able to achieve realistic properties and may be used to produce a full range of properties by varying the grain sizes,and possibly the width of PSD.展开更多
In this review,the development and application of microbially induced carbonate precipitation(MICP)technology for the sealing of underground engineering fractures are discussed in detail.The importance of sealing micr...In this review,the development and application of microbially induced carbonate precipitation(MICP)technology for the sealing of underground engineering fractures are discussed in detail.The importance of sealing micro-fractures in an environmentally friendly and efficient manner is emphasized,and the potential of the MICP method in controlling pore and fracture seepage is highlighted.The fundamental mechanisms,key influencing factors,numerical models,and applications of the MICP in the fields of geological CO_(2) storage and oil resources development are comprehensively summarized in the paper.At the same time,the limitations of the existing research and the future research directions are discussed,especially in terms of improving the processing efficiency,environmental impacts,and cost considerations.Overall,the development of MICP technology provides a new environmentally friendly reinforcement method for geotechnical engineering and is expected to play a key role in the future development of underground space engineering.展开更多
基金support from the OpenGeoSys communitypartially funded by the Prime Minister Research Fellowship,Ministry of Education,Government of India with the project number SB21221901CEPMRF008347.
文摘The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios.
基金financial support from the German Research Foundation(DFG)(Grant No.NA 330/20-1)the DFG under grant No.FE 1962/1-1(426819984)for financial supportthe Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z019002)。
文摘In this study,we carried out a comparative study of two different numerical strategies for the modeling of the biogeochemical processes in microbially induced calcite precipitation(MICP)process.A simplified MICP model was used,which is based on the mass transport theory.Two numerical strategies,namely the operator splitting(OS)and the global implicit(GI)strategies,were adopted to solve the coupled reactive mass transport problems.These two strategies were compared in the aspects of numerical accuracy,convergence property and computational efficiency by solving the presented MICP model.To look more into the details of the model,sensitivity analysis of some important modeling parameters was also carried out in this paper.
文摘Lateritic soils are frequently utilised in tropical areas of the developing world as an engineering material in the construction of rural earth roads, usually in the form of engineered natural surface (ENS) roads. The heavy, seasonal rainfalls common to the tropics results in ENS roads becoming quickly saturated with rainwater, and no longer accessible to motorised transportation. Microbially induced calcite precipitation (MICP) has been successfully used as a treatment process to decrease the permeability of clean, cohesionless sands by studies trying to impede the movement of groundwater, and any pollutants they may contain. In order to see if MICP treatment can also reduce the susceptibility of ENS road lateritic soils to rainwater saturation, this study has treated a Brazilian sample extracted from an ENS road in Espirito do Santo, Brazil, using the MICP bacterium Sporosarcina pasteurii contained within a urea-calcium chloride solution inoculum. Investigation, by means of a Rowe cell, of the post-treatment permeability, to untreated control samples, has shown an average decrease in the vertical coefficient of permeability of 83%, from 1.15 × 10-7 m/s for the untreated control samples, to 1.92 × 10-8 m/s in treated samples.
基金funded by the Beijing Natural Science Foundation(No.8214060)the National Natural Science Foundation of China(No.42107164)the 2021 Graduate Innovation Fund Project of China University of Geosciences,Beijing(No.ZD2021YC059)。
文摘Loess disintegration can lead to geotechnical engineering problems,e.g.,slope erosion,wetting-induced landslide,and hydroconsolidation.Microbially induced calcite precipitation(MICP)technique is a potential loess reinforcing method.This study investigated the physical-mechanical properties of MICP-treated loess and then explored the mechanism of loess modification by MICP.Here,loess first underwent MICP treatment,i.e.,mixing loess with Sporosarcina pasteurii and cementation solution(CS).Then,the effects of the CS concentration(0.2,0.6,0.8,and 1 M)on the physical and mechanical properties of the MICP-treated loess were tested.Finally,the static contact angle test,scanning electron microscopy(SEM),and X-ray diffractometry(XRD)were conducted to study the mechanism of MICP treatment on loess.Results showed the following property changes of loess after MICP treatment:the liquid limit decreased by 1.7%,the average particle size increased from 6 to 47μm,the specific gravity decreased from 2.65 to 2.43,the unconfined compressive strength increased from 37 to 71 k Pa,and the disintegration time increased from 10 to 25 min.Besides,the shear strength also increased,and the shear strength parameters(cohesion c and internal friction angle?)varied with the CS concentration.The static contact angle tests indicated that the water absorption ability of loess was reduced after MICP treatment.SEM and XRD results verified that the CaCO_(3)from MICP was attributed to the above results.The above findings explained the mechanism of MICP treatment of loess:the CaCO_(3)coats and cements the particles,and fills the pores of loess,improving the strength and water stability of loess.
基金Prestige Institute of Engineering, Management, and Research, Indore, India for their supportGuangdong Department of Science and Technology,China for"Overseas Famous Teacher Project"(Grant No.2020A1414010268)。
文摘Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e.allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens.The present study evaluates the feasibility of microbially induced calcium carbonate precipitation(MICP)technique to mitigate wind-induced erosion of calcareous desert sand(Thar desert of Rajasthan province in India). The temperature during biotreatment was kept at 36℃ to stimulate the average temperature of the Thar desert. The spray method was used for bioaugmentation of Sporosarcina(S.) pasteurii and further treatment using chemical solutions. The chemical solution of 0.25 pore volume was sprayed continuously up to 5 d, 10 d, 15 d, and 20 d, using two different concentration ratios of urea and calcium chloride dihydrate viz 2:1 and 1:1. The biotreated samples were subjected to erosion testing(in the wind tunnel) at different wind speeds of 10 m/s, 20 m/s, and 30 m/s. The unconfined compressive strength of the biocemented crust was measured using a pocket penetrometer. The variation in calcite precipitation and microstructure(including the presence of crystalline minerals) of untreated as well as biotreated sand samples were determined through calcimeter, scanning electron microscope(SEM), and energydispersive X-ray spectroscope(EDX). The results demonstrated that the erosion of untreated sand increases with an increase in wind speeds. When compared to untreated sand, a lower erosion was observed in all biocemented sand samples, irrespective of treatment condition and wind speed. It was observed that the sample treated with 1:1 cementation solution for up to 5 d, was found to effectively resist erosion at a wind speed of 10 m/s. Moreover, a significant erosion resistance was ascertained in15 d and 20 d treated samples at higher wind speeds. The calcite content percentage, thickness of crust,bulk density, and surface strength of biocemented sand were enhanced with the increase in treatment duration. The 1:1 concentration ratio of cementation solution was found effective in improving crust thickness and surface strength as compared to 2:1 concentration ratio of cementation solution. The calcite crystals formation was observed in SEM analysis and calcium peaks were observed in EDX analysis for biotreated sand.
文摘It is difficult to collect and characterise well-preserved samples of weakly-cemented granular rocks as conventional sampling techniques often result in destruction of the cementation.An alternative approach is to prepare synthetic geomaterials to match required specifications.This paper introduces microbially induced carbonate precipitation(MICP)as a method to reliably deliver artificiallycemented specimens with customised properties,closely resembling those of soft carbonate sandstones.The specimens are generated from materials with two highly different particle size distributions(PSDs)to access a range of achievable combinations of strengths and porosities.The MICP parameters are kept constant across all samples to obtain similar calcium carbonate characteristics(size of individual crystals,type,etc.),while injected volume is varied to achieve different cementation levels.Although uniform cementation of very coarse sands has been considered very difficult to achieve,the results show that both the fine and coarse sand specimens present high degrees of uniformity and a good degree of repeatability.The unconfined compressive strengths(UCSs)(less than 3000 kPa)and porosities(0.25e0.4)of the artificial specimens fall in the same range of values reported for natural rocks.The strength gainwas greater in the fine sand than that in the coarse sand,as the void size in the latter was significantly larger compared to the calcium carbonate crystals’size,resulting in precipitation on less effective locations,away from contacts between particles.The strengths and porosities obtained for the two sands in this work fall within ranges reported in the literature for natural soft rocks,demonstrating theMICP technique is able to achieve realistic properties and may be used to produce a full range of properties by varying the grain sizes,and possibly the width of PSD.
基金support provided by the National Natural Science Foundation of China(No.42177141).
文摘In this review,the development and application of microbially induced carbonate precipitation(MICP)technology for the sealing of underground engineering fractures are discussed in detail.The importance of sealing micro-fractures in an environmentally friendly and efficient manner is emphasized,and the potential of the MICP method in controlling pore and fracture seepage is highlighted.The fundamental mechanisms,key influencing factors,numerical models,and applications of the MICP in the fields of geological CO_(2) storage and oil resources development are comprehensively summarized in the paper.At the same time,the limitations of the existing research and the future research directions are discussed,especially in terms of improving the processing efficiency,environmental impacts,and cost considerations.Overall,the development of MICP technology provides a new environmentally friendly reinforcement method for geotechnical engineering and is expected to play a key role in the future development of underground space engineering.