In this study, seasonal variation characteristics of surface soil microbial biomass carbon (MBC) and soil microbial biomass nitrogen (MBN) of an artificial vegetation area located in Shapotou for different time pe...In this study, seasonal variation characteristics of surface soil microbial biomass carbon (MBC) and soil microbial biomass nitrogen (MBN) of an artificial vegetation area located in Shapotou for different time periods were studied using the chloroform fumigation method, and the results were compared with those of near-natural vegetation areas and mobile dunes. Results showed that the MBC and MBN levels in the 0-5 cm soil layer were higher in autumn than in summer and spring. As the prolongation of vegetation restoration raised the MBC and MBN levels in summer and autumn, no clear variation was found in spring. However, the MBC and MBN in 5-20 cm had no obvious seasonal variation. During summer and autumn, the variation trend of MBC and MBN in the vertical direction was shown to be 0-5 〉 5-10 〉 10-20 cm in the vegetation area, while for mobile dunes, the MBC and MBN levels increased as the depth increased. The natural vegetation area was shown to possess the highest MBC and MBN levels, and yet mobile dunes have the lowest MBC and MBN levels. MBC and MBN levels in artificial sand-binding vegetation increased with the prolongation of vegetation restoration, indicating that the succession of sand-binding vegetation will result in the ac- cumulation of soil carbon and nitrogen, as well as the restoration of soil fertility.展开更多
The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw retur...The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw returning to the field,and the mechanism of the decomposition of rice straw returning to the field was discussed.Completely randomized experiment of the two factors of the three levels was designed,and a total of nine treatments of indoor soil incubation tests were conducted.Full amount of rice straw was applied to the soil in this simulation experiment and different amounts of brown sugar and urea were added in the three levels of 0(no carbon source and nitrogen source),1(low levels of carbon and nitrogen sources)and 2(high levels of carbon and nitrogen sources),respectively.The results showed that the addition of different amounts of carbon and nitrogen sources to the rice straw could increase the soil carbon content.Compared with T0N0,the microbial biomass carbon of T2N2 was increased significantly by 170.48%;the dissolved organic carbon content of T1N2 was significantly increased by 58.14%and the free humic acid carbon contents of T0N2,T1N1 and T2N0 were significantly increased by 56.16%and 45.55%and 47.80%,respectively;however,there were no significant differences among those of treatments at later incubation periods.The addition of different carbon and nitrogen sources could promote the soil enzyme activities.During the incubation period,all of the soil enzyme activities of adding sugar and urea were higher than those of T0N0 treatment.Therefore,the addition of different amounts of carbon and nitrogen sources to rice straw returning could improve soil microbial biomass carbon content,dissolved organic carbon and soil enzyme activities.展开更多
[Objectives]To comprehensively and deeply explore the effects of different land cover types in the lower reaches of Niyang River on soil microbial biomass carbon and nitrogen,and to provide a scientific basis for the ...[Objectives]To comprehensively and deeply explore the effects of different land cover types in the lower reaches of Niyang River on soil microbial biomass carbon and nitrogen,and to provide a scientific basis for the rational use and sustainable management of land resources in this area.[Methods]Taking the 3 types of land cover(cultivated land,grass land and forest land)in the lower reaches of Niyang River in Tibet as the research object,the contents,distribution characteristics and relationships of soil organic carbon,organic nitrogen,microbial biomass carbon,microbial biomass nitrogen and readily oxidizable organic carbon,and their relationships were studied in 0-10,10-20,20-40,40-60,and 60-100 cm soil depth.[Results]The soil organic carbon content of forest land was higher than that of grass land and cultivated land;the vertical change trend of soil organic carbon content decreased with the increase of depth(P<0.05),and it was mainly concentrated in the soil with a depth of 0-20 cm.The soil organic carbon content was significantly different among forest land,grass land and cultivated land(P<0.05),but there was no significant difference between cultivated land and grass land(P>0.05).The soil organic nitrogen content was significantly different among cultivated land,grass land,and forest land(P<0.05),but there was no significant difference between grass land and forest land(P>0.05).The readily oxidizable organic carbon,microbial biomass carbon and nitrogen in forest land were higher than that in cultivated land and grass land.The change trend of soil readily oxidizable organic carbon,microbial biomass carbon and microbial biomass nitrogen was similar to the change of soil organic carbon content,showing a significant positive correlation.In addition to being subject to land cover,soil microbial biomass carbon and nitrogen content were also subject to the interaction of factors such as soil temperature,humidity,pH and vegetation types.[Conclusions]Changes in land cover significantly affect soil organic carbon and nitrogen,readily oxidizable organic carbon,microbial biomass carbon and nitrogen content.展开更多
The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in ...The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in the soils ranged from 75.9 to 301.0 μg Cg-1 with an average of 206.1 μg C g-1, accounting for 1.36%~6.24% of the total soil organic C with an average of 3.07%, and the SMBN contents from 0.51 to 68.40 μg N g-1 with an average of 29.4 μg N g-1, accounting for 0.20%~5.65% of the total N in the soils with an average of 3.36%. A close relationship was found between SMBC and SMBN, and they both were positively correlated with total organic C, total N, NaOH hydrolizable N and mineralizable N. These results confirmed that soil microbial biomass had a comparative role in nutrient cycles of soils.展开更多
Impacts of newly added organic carbon (C) and inorganic nitrogen (N) on the microbial utilization of soil organic matter are important in determining the future C balance of terrestrial ecosystems. We examined mic...Impacts of newly added organic carbon (C) and inorganic nitrogen (N) on the microbial utilization of soil organic matter are important in determining the future C balance of terrestrial ecosystems. We examined microbial responses to cellulose and ammonium nitrate additions in three soils with very different C and N availability. These soils included an organic soil( 14.2% total organic C, with extremely high extractable N and low labile C), a forest soi1(4.7% total organic C, with high labile C and extremely low extractable N), and a grassland soil(1.6% total organic C, with low extractable N and labile C). While cellulose addition alone significantly enhanced microbial respiration and biomass C and N in the organic and grassland soils, it accelerated only the microbial respiration in the highly-N limited forest soil. These results indicated that when N was not limited, C addition enhanced soil respiration by stimulating both microbial growth and their metabolic activity, New C inputs lead to elevated C release in all three soils, and the magnitude of the enhancement was higher in the organic and grassland soils than the forest soil. The addition of cellulose plus N to the forest and grassland soils initially increased the microbial biomass and respiration rates, but decreased the rates as time progressed. Compared to cellulose addition alone, cellulose plus N additions increased the total C-released in the grassland soil, but not in the forest soil. The enhancement of total C- released induced by C and N addition was less than 50% of the added-C in the forest soil after 96 d of incubation, in contrast to 87.5% and 89.0% in the organic and grassland soils. These results indicate that indigenous soil C and N availability substantially impacts the allocation of organic C for microbial biomass growth and/or respiration, potentially regulating the turnover rates of the new organic C inputs.展开更多
Assessment of soil quality is an invaluable tool in determining the sustainability and environmental impact of agricultural ecosystems. The study was conducted to assess the quality of the soils under arable cultivati...Assessment of soil quality is an invaluable tool in determining the sustainability and environmental impact of agricultural ecosystems. The study was conducted to assess the quality of the soils under arable cultivation, locally irri-gated and non-irrigated, forestry plantations of teak (Tectona grandis Lin.) and gmelina (Gme- lina arborea Roxb.), and cashew (Anacardium occidentale Lin.) plantation agro ecosystems using soil organic carbon (SOC), soil total ni-trogen (STN) and soil microbial biomass C (SMBC) and N (SMBN) at Minna in the southern Guinea savanna of Nigeria. Soil samples were collected from soil depths of 0-5 cm and 5-10 cm in all the agro ecosystems and analyzed for physical, chemical and biological properties. All the agro ecosystems had similar loamy soil texture at both depths. The soils have high fer-tility status in terms of available phosphorus and exchangeable calcium, magnesium and po- tassium. The irrigated arable land had significantly (P 6.6 suggesting fungal domination in all the agroecosystems. The forestry plantation soils had higher SMBC and SMBN as a per-centage of SOC and STN respectively than the cultivated arable land soils. Burning for clearing vegetation and poor stocking of forestry planta-tions may impair the quality of the soil. The study suggests that the locally irrigated agro- ecosystem soil seems to be of better quality than the other agroecosystem soils.展开更多
Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool.It is of great signifi cance to understand the dynamics of soil microbial biomass in plantation for rational manageme...Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool.It is of great signifi cance to understand the dynamics of soil microbial biomass in plantation for rational management and cultivation of plantation.In order to explore the temporal dynamics and infl uencing factors of soil microbial biomass of Keteleeria fortunei var.cyclolepis at diff erent stand ages,the plantation of diff erent ages(young forest,5 years;middle-aged forest,22 years;mature forest,40 years)at the Guangxi Daguishan forest station of China were studied to examine the seasonal variation of their microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)by chloroform fumigation extraction method.It was found that among the forests of diff erent age,MBC and MBN diff ered signifi cantly in the 0–10 cm soil layer,and MBN diff ered signifi cantly in the 10–20 cm soil layer,but there was no signifi cant diff erence in MBC for the 10–20 cm soil layer or in either MBC or MBN for the 20–40 cm soil layer.With increasing maturity of the forest,MBC gradually decreased in the 0–10 cm soil layer and increased fi rstly and then decreased in the 10–20 cm and 20–40 cm soil layers,and MBN increased fi rstly and then decreased in all three soil layers.As the soil depth increased,both MBC and MBN gradually decreased for all three forests.The MBC and MBN basically had the same seasonal variation in all three soil layers of all three forests,i.e.,high in the summer and low in the winter.Correlation analysis showed that MBC was signifi cantly positively correlated with soil organic matter,total nitrogen,and soil moisture,whereas MBN was signifi cantly positively correlated with soil total nitrogen.It showed that soil moisture content was the main factor determining the variation of soil microbial biomass by Redundancy analysis.The results showed that the soil properties changed continuously as the young forest grew into the middle-aged forest,which increased soil microbial biomass and enriched the soil nutrients.However,the soil microbial biomass declined as the middle-age forest continued to grow,and the soil nutrients were reduced in the mature forest.展开更多
Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequest...Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch(Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at100 kg N ha-1 a-1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However,soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However,microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, d13 C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition(1) altered microbial biomass and activity without affecting soil C in light fractions and(2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability.展开更多
Background:Forest restoration has been considered an effective method to increase soil organic carbon(SOC),whereas it remains unclear whether long-term forest restoration will continuously increase SOC.Such large unce...Background:Forest restoration has been considered an effective method to increase soil organic carbon(SOC),whereas it remains unclear whether long-term forest restoration will continuously increase SOC.Such large uncertainties may be mainly due to the limited knowledge on how soil microorganisms will contribute to SOC accumulation over time.Methods:We simultaneously documented SOC,total phospholipid fatty acids(PLFAs),and amino sugars(AS)content across a forest restoration gradient with average stand ages of 14,49,70,and>90 years in southern China.Results:The SOC and AS continuously increased with stand age.The ratio of fungal PLFAs to bacterial PLFAs showed no change with stand age,while the ratio of fungal AS to bacterial AS significantly increased.The total microbial residue-carbon(AS-C)accounted for 0.95-1.66% in SOC across all forest restoration stages,with significantly higher in fungal residue-C(0.68-1.19%)than bacterial residue-C(0.05-0.11%).Furthermore,the contribution of total AS-C to SOC was positively correlated with clay content at 0-10 cm soil layer but negatively related to clay content at 10-20 cm soil layer.Conclusions:These findings highlight the significant contribution of AS-C to SOC accumulation along forest restoration stages,with divergent contributions from fungal residues and bacterial residues.Soil clay content with stand age significantly affects the divergent contributions of AS-C to SOC at two different soil layers.展开更多
To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-...To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, and 43-year-old abandoned lands and one native grassland, in a semiarid hilly area of the Loess Plateau. The results indicated that the successional time and soil depths affected soil microbiological parameters significantly. In 20-cm soil layer, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), MBC/MBN, MBC to soil organic carbon ratio (MBC/SOC), and soil basal respiration tended to increase with successional stages but decrease with soil depths. In contrast, metabolic quotient (qCO2) tended to decrease with successional stages but increase with soil depths. In addition, the activities of urease, catalase, neutral phosphatase, β-fructofuranosidase, and earboxymethyl cellulose (CMC) enzyme increased with successional stages and soil depths. They were significantly positively correlated with microbial biomass and SOC (P 〈 0.5), whereas no obvious trend was observed for the polyphenoloxidase activity. The results indicated that natural vegetation succession could improve soil quality and promote ecosystem restoration, but it needed a long time under local climate conditions.展开更多
Although afforestation of farmlands has been proposed as an effective method of carbon(C) sequestration, there remain uncertainties that deter us from developing a clear picture of C stocks in plantation ecosystems.Th...Although afforestation of farmlands has been proposed as an effective method of carbon(C) sequestration, there remain uncertainties that deter us from developing a clear picture of C stocks in plantation ecosystems.This study investigated the dynamics of stand structure and plant diversity, and C and nitrogen(N) pools in trees,herbs, litter, and soil(0–100 cm depth) in black locust plantations aged 9, 17, 30, and 37 years, and in newly abandoned farmlands as pre-afforestation sites, on the Loess Plateau, China. Stand density decreased significantly, while tree diameter at breast height and height increased during stand development. The dominant species of the herb layer differed with age. Afforestation resulted in slight increases in tree C and N storage in plantations from 9 to 30 years of age, and then significantly increased from 30 to 37 years. Compared to pre-afforestation, C and N storage in soil decreased to minimum values in stands aged 17 and 9 years, respectively. The soil re-accumulated C and N during stand development, attaining equilibrium levels similar to those in pre-afforestation when stands reached about 30 years of age. Soil C and N storage in 37-year stands were 29 and 16% higher, respectively, than in pre-afforestation levels. However, C and N concentrations in the subsoil(20–40 cm) were still less than the preafforestation levels for stands of all ages(from 9 to 37 years). The relative contribution to the total ecosystem C and N pools increased in trees and decreased in soil during the observed period. Our results indicate that afforestation reduced soil C and N storage during the early stages of stand development. We conclude that the growing phase of an afforested stand over its initial 30 years is important for C and N sequestration by black locust due to the C and N storage that result from recovered soil quality and an increase in tree biomass.展开更多
Microorganisms play a key role in the response of soil ecosystems to the rising atmospheric carbon dioxide (CO2) as they mineralize organic matter and drive nutrient cycling. To assess the effects of elevated CO2 on...Microorganisms play a key role in the response of soil ecosystems to the rising atmospheric carbon dioxide (CO2) as they mineralize organic matter and drive nutrient cycling. To assess the effects of elevated CO2 on soil microbial C and N immobilization and on soil enzyme activities, in years 8 (2006) and 9 (2007) of an open-top chamber experiment that begun in spring of 1999, soil was sampled in summer, and microbial biomass and enzyme activity related to the carbon (C), nitrogen (N) and phosphorus (P) cycling were measured. Although no effects on microbial biomass C were detected, changes in microbial biomass N and metabolic activity involving C, N and P were observed under elevated CO2. Invertase and .dehydrogenase activities were significantly enhanced by different degrees of elevated CO2. Nitrifying enzyme activity was significantly (P 〈 0.01) increased in the August 2006 samples that received the elevated COs treatment, as compared to the samples that received the ambient treatment. Denitrifying enzyme activity was significantly (P 〈 0.04) decreased by elevated COs treatments in the August 2006 and June 2007 (P 〈 0.09) samples, β-N-acetylglucosaminidase activity was increased under elevated CO2 by 7% and 25% in June and August 2006, respectively, compared to those under ambient CO2. The results of June 2006 samples showed that acid phosphatase activity was significantly enhanced under elevated CO2. Overall, these results suggested that elevated CO2 might cause changes in the belowground C, N and P cycling in temperate forest soils.展开更多
The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were eva...The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were evaluated to understand the relationship between microbial community and soil properties. MBC and MBN were measured using fumigation extraction, and microbial community was analyzed by the method of fatty acid methyl ester (FAME). The contents of organic C, total N, MBC, MBN, total FAME, fungal FAME, bacterial FAME and Gram-negative bacterial FAME at the natural succession sites were higher than those of the agricultural land, but lower than those of the natural vegetation sites. The MBC, MBN and total FAME were closely correlated with organic C and total N. Furthermore, organic C and total N were found to be positively correlated with fungal FAME, bacterial FAME, fungal/bacterial and Gram-negative bacterial FAME. Natural succession would be useful for improving soil microbial properties and might be an important alternative for sustaining soil quality on the semi-arid Loess Plateau in China.展开更多
In the Sudano-Sahelian zone of Burkina Faso, Piliostigma reticulatum (DC) Hochst and Piliostigma thonningii (Schumach) are precursor species of fallow land colonization and they are used by rural villagers. The pr...In the Sudano-Sahelian zone of Burkina Faso, Piliostigma reticulatum (DC) Hochst and Piliostigma thonningii (Schumach) are precursor species of fallow land colonization and they are used by rural villagers. The present study aimed to assess the contribution of Piliostigma species to soil quality improvement. We quantified organic carbon, total nitrogen, soil microbial biomass, soil basal respiration and metabolic quotient from soil samples taken under and outside Piliostigma canopies. We used one-way ANOVA to test for differences in the above parameters between locations (beneath and outside Piliostigma canopies). We recorded increased total organic carbon under Piliostigma from 31%–105% and in total nitrogen from 23%–66%. Microbial biomass was 13%–266% higher beneath canopies as compared to outside canopies. Basal respiration was also higher beneath canopies. The chemical elements varied by class of soil texture. Metabolic quotient (qCO2) was significantly correlated to clay (r = 0.80) and silt (r = 0.79) content. Piliostigma stands produced abundant litter due to their leaf biomass. Thus, they contribute to improved total organic carbon and total nitrogen content in the different phytogeographic zones and improve soil fertility.展开更多
Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fr...Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fractions C, nitrogen (N) and salinity in saline-alkaline wetlands in the middle reaches of the Heihe River Basin. Three land-use types were selected: intact saline-alkaline meadow wetland, artificial shrubbery (planting Tamarix) and farmland (cultivated for 18 years) of soils previously under meadow wetland. SOC, easily oxidized carbon, microbial biomass carbon, total N, NO3--N and salinity concentrations were measured. The results show that SOC and labile fraction carbon contents decreased significantly with increasing soil depth in the three land-use wetlands. The labile fraction carbon contents in the topsoil (0-20cm) in cultivated soils were significantly higher than that in intact meadow wetland and artificial shrubbery soil. The aboveground biomass and soil permeability were the primary influencing factors on the contents of SOC and the labile carbon in the intact meadow wetland and artificial shrubbery soil, however, the farming practice was a factor in cultivated soil. Agricultural measures can effectively reduce the salinity contents; however, it caused a significant increase of NO 3--N concentrations which posed a threat to groundwater quality in the study area.展开更多
Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in...Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in rhizosphere soil aerated using three different methods(continuous flooding(CF), continuous flooding and aeration(CFA), and alternate wetting and drying(AWD)). The abundances of amoA ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB), nirS, nirK, and nifH genes, and the activities of urease, protease, ammonia oxidase, nitrate reductase, and nitrite reductase were measured at the tillering(S1), heading(S2), and ripening(S3) stages. We analyzed the relationships of the aforementioned microbial activity indices, in addition to soil microbial biomass carbon(MBC) and soil microbial biomass nitrogen(MBN), with the concentration of soil nitrate and ammonium nitrogen. The abundance of nitrogen function genes and the activities of nitrogen invertase in rice rhizosphere soil were higher at S2 compared with S1 and S3 in all treatments. AWD and CFA increased the abundance of amoA and nifH genes, and the activities of urease, protease, and ammonia oxidase, and decreased the abundance of nirS and nirK genes and the activities of nitrate reductase and nitrite reductase, with the effect of AWD being particularly strong. During the entire growth period, the mean abundances of the AOA amoA, AOB amoA, and nifH genes were 2.9, 5.8, and 3.0 higher in the AWD treatment than in the CF treatment, respectively, and the activities of urease, protease, and ammonia oxidase were 1.1, 0.5, and 0.7 higher in the AWD treatment than in the CF treatment, respectively. The abundances of the nirS and nirK genes, and the activities of nitrate reductase and nitrite reductase were 73.6, 84.8, 10.3 and 36.5% lower in the AWD treatment than in the CF treatment, respectively. The abundances of the AOA amoA, AOB amoA, and nifH genes were significantly and positively correlated with the activities of urease, protease, and ammonia oxidase, and the abundances of the nirS and nirK genes were significantly positively correlated with the activities of nitrate reductase. All the above indicators were positively correlated with soil MBC and MBN. In sum, microbial activity related to nitrogen transformation in rice rhizosphere soil was highest at S2. Aeration can effectively increase the activity of most nitrogen-converting microorganisms and MBN, and thus promote soil nitrogen transformation.展开更多
By using packed soil-core incubation experiments, we have studied stimulating effects of addition of external carbon (C) (glu- cose, 6.4 g C m 2) on heterotrophic respiration and microbial biomass C of a mature br...By using packed soil-core incubation experiments, we have studied stimulating effects of addition of external carbon (C) (glu- cose, 6.4 g C m 2) on heterotrophic respiration and microbial biomass C of a mature broadleaf and Korean pine mixed forest (BKPF) and an adjacent white birch forest (WBF) soil under different wetting intensities (55% and 80% WFPS, water-filled pore space) and nitrogen (N) supply (NH4C1 and KNO3, 4.5 g N m-e) conditions. The results showed that for the control, the cumulative carbon dioxide (CO2) flux from WBF soil during the 15-day incubation ranged from 5.44 to 5.82 g CO2-C m-2, which was significantly larger than that from BKPF soil (2.86 to 3.36 g CO2-C m 2). With increasing wetting intensity, the cumulative CO2 flux from the control was decreased for the WBF soil, whereas an increase in the CO2 flux was observed in the BKPF soil (P 〈 0.05). The addition of NH4C1 or KNO3 alone significantly reduced the cumulative CO2 fluxes by 9.2%-21.6 % from the two soils, especially from WBF soil at low wetting intensity. The addition of glucose alone significantly increased soil heterotrophic respiration, microbial biomass C (MBC), and microbial metabolic quotient. The glucose-induced cumulative CO2 fluxes and soil MBC during the incubation ranged from 8.7 to 11.7 g CO2-C m-2 and from 7.4 to 23.9 g C m-2, which are larger than the dose of added C. Hence, the addition of external carbon can increase the decomposition of soil native organic C. The glucose-induced average and maximum rates of CO2 fluxes during the incubation were significantly in- fluenced by wetting intensity (WI) and vegetation type (VT), and by WIxVT, NH4ClxVT and WIxVTxNH4C1 (P〈0.05). The addition of NH4C1, instead of KNO3, significantly decreased the glucose-induced MBC of WBF soil (P〈0.05), whereas adding NH4C1 and KNO3 both significantly increased the glucose-induced MBC of BKPF soil at high moisture (P〈0.05). According to the differences in soil labile C pools, MBC and CO2 fluxes in the presence and absence of glucose, it can be concluded that the stimulating effects of glucose on soil heterotrophic respiration and MBC under temperate forests were dependent on vegetation type, soil moisture, and amount and type of the N added.展开更多
基金supported by the Chinese National Natu-ral Scientific Foundation(41171077,40801002,40971031)
文摘In this study, seasonal variation characteristics of surface soil microbial biomass carbon (MBC) and soil microbial biomass nitrogen (MBN) of an artificial vegetation area located in Shapotou for different time periods were studied using the chloroform fumigation method, and the results were compared with those of near-natural vegetation areas and mobile dunes. Results showed that the MBC and MBN levels in the 0-5 cm soil layer were higher in autumn than in summer and spring. As the prolongation of vegetation restoration raised the MBC and MBN levels in summer and autumn, no clear variation was found in spring. However, the MBC and MBN in 5-20 cm had no obvious seasonal variation. During summer and autumn, the variation trend of MBC and MBN in the vertical direction was shown to be 0-5 〉 5-10 〉 10-20 cm in the vegetation area, while for mobile dunes, the MBC and MBN levels increased as the depth increased. The natural vegetation area was shown to possess the highest MBC and MBN levels, and yet mobile dunes have the lowest MBC and MBN levels. MBC and MBN levels in artificial sand-binding vegetation increased with the prolongation of vegetation restoration, indicating that the succession of sand-binding vegetation will result in the ac- cumulation of soil carbon and nitrogen, as well as the restoration of soil fertility.
基金Supported by the National Key Research and Development Plan Project(2016YFD0300909-04)。
文摘The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw returning to the field,and the mechanism of the decomposition of rice straw returning to the field was discussed.Completely randomized experiment of the two factors of the three levels was designed,and a total of nine treatments of indoor soil incubation tests were conducted.Full amount of rice straw was applied to the soil in this simulation experiment and different amounts of brown sugar and urea were added in the three levels of 0(no carbon source and nitrogen source),1(low levels of carbon and nitrogen sources)and 2(high levels of carbon and nitrogen sources),respectively.The results showed that the addition of different amounts of carbon and nitrogen sources to the rice straw could increase the soil carbon content.Compared with T0N0,the microbial biomass carbon of T2N2 was increased significantly by 170.48%;the dissolved organic carbon content of T1N2 was significantly increased by 58.14%and the free humic acid carbon contents of T0N2,T1N1 and T2N0 were significantly increased by 56.16%and 45.55%and 47.80%,respectively;however,there were no significant differences among those of treatments at later incubation periods.The addition of different carbon and nitrogen sources could promote the soil enzyme activities.During the incubation period,all of the soil enzyme activities of adding sugar and urea were higher than those of T0N0 treatment.Therefore,the addition of different amounts of carbon and nitrogen sources to rice straw returning could improve soil microbial biomass carbon content,dissolved organic carbon and soil enzyme activities.
基金Natural Science Foundation of Tibet Autonomous Region(XZ2019ZRG-60).
文摘[Objectives]To comprehensively and deeply explore the effects of different land cover types in the lower reaches of Niyang River on soil microbial biomass carbon and nitrogen,and to provide a scientific basis for the rational use and sustainable management of land resources in this area.[Methods]Taking the 3 types of land cover(cultivated land,grass land and forest land)in the lower reaches of Niyang River in Tibet as the research object,the contents,distribution characteristics and relationships of soil organic carbon,organic nitrogen,microbial biomass carbon,microbial biomass nitrogen and readily oxidizable organic carbon,and their relationships were studied in 0-10,10-20,20-40,40-60,and 60-100 cm soil depth.[Results]The soil organic carbon content of forest land was higher than that of grass land and cultivated land;the vertical change trend of soil organic carbon content decreased with the increase of depth(P<0.05),and it was mainly concentrated in the soil with a depth of 0-20 cm.The soil organic carbon content was significantly different among forest land,grass land and cultivated land(P<0.05),but there was no significant difference between cultivated land and grass land(P>0.05).The soil organic nitrogen content was significantly different among cultivated land,grass land,and forest land(P<0.05),but there was no significant difference between grass land and forest land(P>0.05).The readily oxidizable organic carbon,microbial biomass carbon and nitrogen in forest land were higher than that in cultivated land and grass land.The change trend of soil readily oxidizable organic carbon,microbial biomass carbon and microbial biomass nitrogen was similar to the change of soil organic carbon content,showing a significant positive correlation.In addition to being subject to land cover,soil microbial biomass carbon and nitrogen content were also subject to the interaction of factors such as soil temperature,humidity,pH and vegetation types.[Conclusions]Changes in land cover significantly affect soil organic carbon and nitrogen,readily oxidizable organic carbon,microbial biomass carbon and nitrogen content.
文摘The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in the soils ranged from 75.9 to 301.0 μg Cg-1 with an average of 206.1 μg C g-1, accounting for 1.36%~6.24% of the total soil organic C with an average of 3.07%, and the SMBN contents from 0.51 to 68.40 μg N g-1 with an average of 29.4 μg N g-1, accounting for 0.20%~5.65% of the total N in the soils with an average of 3.36%. A close relationship was found between SMBC and SMBN, and they both were positively correlated with total organic C, total N, NaOH hydrolizable N and mineralizable N. These results confirmed that soil microbial biomass had a comparative role in nutrient cycles of soils.
基金The US Department of Agriculture(No.NRI-2000-00531) the National Science Foundationto North Carolina State University(No.DEB-00-01686) thNational Natural Science Foundation of China(No.40231016) and Nanjing Agricultural University of Jiangsu,China(No.BK2004002)
文摘Impacts of newly added organic carbon (C) and inorganic nitrogen (N) on the microbial utilization of soil organic matter are important in determining the future C balance of terrestrial ecosystems. We examined microbial responses to cellulose and ammonium nitrate additions in three soils with very different C and N availability. These soils included an organic soil( 14.2% total organic C, with extremely high extractable N and low labile C), a forest soi1(4.7% total organic C, with high labile C and extremely low extractable N), and a grassland soil(1.6% total organic C, with low extractable N and labile C). While cellulose addition alone significantly enhanced microbial respiration and biomass C and N in the organic and grassland soils, it accelerated only the microbial respiration in the highly-N limited forest soil. These results indicated that when N was not limited, C addition enhanced soil respiration by stimulating both microbial growth and their metabolic activity, New C inputs lead to elevated C release in all three soils, and the magnitude of the enhancement was higher in the organic and grassland soils than the forest soil. The addition of cellulose plus N to the forest and grassland soils initially increased the microbial biomass and respiration rates, but decreased the rates as time progressed. Compared to cellulose addition alone, cellulose plus N additions increased the total C-released in the grassland soil, but not in the forest soil. The enhancement of total C- released induced by C and N addition was less than 50% of the added-C in the forest soil after 96 d of incubation, in contrast to 87.5% and 89.0% in the organic and grassland soils. These results indicate that indigenous soil C and N availability substantially impacts the allocation of organic C for microbial biomass growth and/or respiration, potentially regulating the turnover rates of the new organic C inputs.
文摘Assessment of soil quality is an invaluable tool in determining the sustainability and environmental impact of agricultural ecosystems. The study was conducted to assess the quality of the soils under arable cultivation, locally irri-gated and non-irrigated, forestry plantations of teak (Tectona grandis Lin.) and gmelina (Gme- lina arborea Roxb.), and cashew (Anacardium occidentale Lin.) plantation agro ecosystems using soil organic carbon (SOC), soil total ni-trogen (STN) and soil microbial biomass C (SMBC) and N (SMBN) at Minna in the southern Guinea savanna of Nigeria. Soil samples were collected from soil depths of 0-5 cm and 5-10 cm in all the agro ecosystems and analyzed for physical, chemical and biological properties. All the agro ecosystems had similar loamy soil texture at both depths. The soils have high fer-tility status in terms of available phosphorus and exchangeable calcium, magnesium and po- tassium. The irrigated arable land had significantly (P 6.6 suggesting fungal domination in all the agroecosystems. The forestry plantation soils had higher SMBC and SMBN as a per-centage of SOC and STN respectively than the cultivated arable land soils. Burning for clearing vegetation and poor stocking of forestry planta-tions may impair the quality of the soil. The study suggests that the locally irrigated agro- ecosystem soil seems to be of better quality than the other agroecosystem soils.
文摘Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool.It is of great signifi cance to understand the dynamics of soil microbial biomass in plantation for rational management and cultivation of plantation.In order to explore the temporal dynamics and infl uencing factors of soil microbial biomass of Keteleeria fortunei var.cyclolepis at diff erent stand ages,the plantation of diff erent ages(young forest,5 years;middle-aged forest,22 years;mature forest,40 years)at the Guangxi Daguishan forest station of China were studied to examine the seasonal variation of their microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)by chloroform fumigation extraction method.It was found that among the forests of diff erent age,MBC and MBN diff ered signifi cantly in the 0–10 cm soil layer,and MBN diff ered signifi cantly in the 10–20 cm soil layer,but there was no signifi cant diff erence in MBC for the 10–20 cm soil layer or in either MBC or MBN for the 20–40 cm soil layer.With increasing maturity of the forest,MBC gradually decreased in the 0–10 cm soil layer and increased fi rstly and then decreased in the 10–20 cm and 20–40 cm soil layers,and MBN increased fi rstly and then decreased in all three soil layers.As the soil depth increased,both MBC and MBN gradually decreased for all three forests.The MBC and MBN basically had the same seasonal variation in all three soil layers of all three forests,i.e.,high in the summer and low in the winter.Correlation analysis showed that MBC was signifi cantly positively correlated with soil organic matter,total nitrogen,and soil moisture,whereas MBN was signifi cantly positively correlated with soil total nitrogen.It showed that soil moisture content was the main factor determining the variation of soil microbial biomass by Redundancy analysis.The results showed that the soil properties changed continuously as the young forest grew into the middle-aged forest,which increased soil microbial biomass and enriched the soil nutrients.However,the soil microbial biomass declined as the middle-age forest continued to grow,and the soil nutrients were reduced in the mature forest.
基金supported by the National Basic Research Program of China(2012CB416903)the National Natural Science Foundation of China(31570600)
文摘Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch(Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at100 kg N ha-1 a-1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However,soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However,microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, d13 C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition(1) altered microbial biomass and activity without affecting soil C in light fractions and(2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability.
基金financially supported by the National Natural Science Foundation of China for Distinguished Young Scholars(41825020)General Program(31870461)+3 种基金the“Hundred Talent Program”of South China Botanical Garden at the Chinese Academy of Sciences(Y761031001)the“Young Top-notch Talent”in Pearl River talent plan of Guangdong Province(2019QN01L763)the Guangdong Basic and Applied Basic Research Foundation(2021A1515012147)the China Scholarships Council(No.202004910605).
文摘Background:Forest restoration has been considered an effective method to increase soil organic carbon(SOC),whereas it remains unclear whether long-term forest restoration will continuously increase SOC.Such large uncertainties may be mainly due to the limited knowledge on how soil microorganisms will contribute to SOC accumulation over time.Methods:We simultaneously documented SOC,total phospholipid fatty acids(PLFAs),and amino sugars(AS)content across a forest restoration gradient with average stand ages of 14,49,70,and>90 years in southern China.Results:The SOC and AS continuously increased with stand age.The ratio of fungal PLFAs to bacterial PLFAs showed no change with stand age,while the ratio of fungal AS to bacterial AS significantly increased.The total microbial residue-carbon(AS-C)accounted for 0.95-1.66% in SOC across all forest restoration stages,with significantly higher in fungal residue-C(0.68-1.19%)than bacterial residue-C(0.05-0.11%).Furthermore,the contribution of total AS-C to SOC was positively correlated with clay content at 0-10 cm soil layer but negatively related to clay content at 10-20 cm soil layer.Conclusions:These findings highlight the significant contribution of AS-C to SOC accumulation along forest restoration stages,with divergent contributions from fungal residues and bacterial residues.Soil clay content with stand age significantly affects the divergent contributions of AS-C to SOC at two different soil layers.
基金Project supported by the National Key Basic Research Program (973 Program) of China (No. 2007CB106804)the PhD candidate Training Program (No. 20060730027)+1 种基金the "111" Project from the State Administration of Foreign Experts Affairs (SAFEA)the Ministry of Education of China
文摘To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, and 43-year-old abandoned lands and one native grassland, in a semiarid hilly area of the Loess Plateau. The results indicated that the successional time and soil depths affected soil microbiological parameters significantly. In 20-cm soil layer, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), MBC/MBN, MBC to soil organic carbon ratio (MBC/SOC), and soil basal respiration tended to increase with successional stages but decrease with soil depths. In contrast, metabolic quotient (qCO2) tended to decrease with successional stages but increase with soil depths. In addition, the activities of urease, catalase, neutral phosphatase, β-fructofuranosidase, and earboxymethyl cellulose (CMC) enzyme increased with successional stages and soil depths. They were significantly positively correlated with microbial biomass and SOC (P 〈 0.5), whereas no obvious trend was observed for the polyphenoloxidase activity. The results indicated that natural vegetation succession could improve soil quality and promote ecosystem restoration, but it needed a long time under local climate conditions.
基金supported by the National Nature Science Foundation of China(Nos.41201088,41371506 and 41601058)
文摘Although afforestation of farmlands has been proposed as an effective method of carbon(C) sequestration, there remain uncertainties that deter us from developing a clear picture of C stocks in plantation ecosystems.This study investigated the dynamics of stand structure and plant diversity, and C and nitrogen(N) pools in trees,herbs, litter, and soil(0–100 cm depth) in black locust plantations aged 9, 17, 30, and 37 years, and in newly abandoned farmlands as pre-afforestation sites, on the Loess Plateau, China. Stand density decreased significantly, while tree diameter at breast height and height increased during stand development. The dominant species of the herb layer differed with age. Afforestation resulted in slight increases in tree C and N storage in plantations from 9 to 30 years of age, and then significantly increased from 30 to 37 years. Compared to pre-afforestation, C and N storage in soil decreased to minimum values in stands aged 17 and 9 years, respectively. The soil re-accumulated C and N during stand development, attaining equilibrium levels similar to those in pre-afforestation when stands reached about 30 years of age. Soil C and N storage in 37-year stands were 29 and 16% higher, respectively, than in pre-afforestation levels. However, C and N concentrations in the subsoil(20–40 cm) were still less than the preafforestation levels for stands of all ages(from 9 to 37 years). The relative contribution to the total ecosystem C and N pools increased in trees and decreased in soil during the observed period. Our results indicate that afforestation reduced soil C and N storage during the early stages of stand development. We conclude that the growing phase of an afforested stand over its initial 30 years is important for C and N sequestration by black locust due to the C and N storage that result from recovered soil quality and an increase in tree biomass.
基金Supported by the National Natural Science Foundation of China (No.90411020)
文摘Microorganisms play a key role in the response of soil ecosystems to the rising atmospheric carbon dioxide (CO2) as they mineralize organic matter and drive nutrient cycling. To assess the effects of elevated CO2 on soil microbial C and N immobilization and on soil enzyme activities, in years 8 (2006) and 9 (2007) of an open-top chamber experiment that begun in spring of 1999, soil was sampled in summer, and microbial biomass and enzyme activity related to the carbon (C), nitrogen (N) and phosphorus (P) cycling were measured. Although no effects on microbial biomass C were detected, changes in microbial biomass N and metabolic activity involving C, N and P were observed under elevated CO2. Invertase and .dehydrogenase activities were significantly enhanced by different degrees of elevated CO2. Nitrifying enzyme activity was significantly (P 〈 0.01) increased in the August 2006 samples that received the elevated COs treatment, as compared to the samples that received the ambient treatment. Denitrifying enzyme activity was significantly (P 〈 0.04) decreased by elevated COs treatments in the August 2006 and June 2007 (P 〈 0.09) samples, β-N-acetylglucosaminidase activity was increased under elevated CO2 by 7% and 25% in June and August 2006, respectively, compared to those under ambient CO2. The results of June 2006 samples showed that acid phosphatase activity was significantly enhanced under elevated CO2. Overall, these results suggested that elevated CO2 might cause changes in the belowground C, N and P cycling in temperate forest soils.
基金Supported by the National Natural Science Foundation of China (Nos.50639070-4 and 30671666)the National Major Program on Pollution Control and Management of Water Body (No.2008ZX07104-003-03)
文摘The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were evaluated to understand the relationship between microbial community and soil properties. MBC and MBN were measured using fumigation extraction, and microbial community was analyzed by the method of fatty acid methyl ester (FAME). The contents of organic C, total N, MBC, MBN, total FAME, fungal FAME, bacterial FAME and Gram-negative bacterial FAME at the natural succession sites were higher than those of the agricultural land, but lower than those of the natural vegetation sites. The MBC, MBN and total FAME were closely correlated with organic C and total N. Furthermore, organic C and total N were found to be positively correlated with fungal FAME, bacterial FAME, fungal/bacterial and Gram-negative bacterial FAME. Natural succession would be useful for improving soil microbial properties and might be an important alternative for sustaining soil quality on the semi-arid Loess Plateau in China.
文摘In the Sudano-Sahelian zone of Burkina Faso, Piliostigma reticulatum (DC) Hochst and Piliostigma thonningii (Schumach) are precursor species of fallow land colonization and they are used by rural villagers. The present study aimed to assess the contribution of Piliostigma species to soil quality improvement. We quantified organic carbon, total nitrogen, soil microbial biomass, soil basal respiration and metabolic quotient from soil samples taken under and outside Piliostigma canopies. We used one-way ANOVA to test for differences in the above parameters between locations (beneath and outside Piliostigma canopies). We recorded increased total organic carbon under Piliostigma from 31%–105% and in total nitrogen from 23%–66%. Microbial biomass was 13%–266% higher beneath canopies as compared to outside canopies. Basal respiration was also higher beneath canopies. The chemical elements varied by class of soil texture. Metabolic quotient (qCO2) was significantly correlated to clay (r = 0.80) and silt (r = 0.79) content. Piliostigma stands produced abundant litter due to their leaf biomass. Thus, they contribute to improved total organic carbon and total nitrogen content in the different phytogeographic zones and improve soil fertility.
基金supported by one of Major State Basic Research Development Program (2009CB421302)the Gansu Provincial Natural Science Foundation of China (2008GS01759)
文摘Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fractions C, nitrogen (N) and salinity in saline-alkaline wetlands in the middle reaches of the Heihe River Basin. Three land-use types were selected: intact saline-alkaline meadow wetland, artificial shrubbery (planting Tamarix) and farmland (cultivated for 18 years) of soils previously under meadow wetland. SOC, easily oxidized carbon, microbial biomass carbon, total N, NO3--N and salinity concentrations were measured. The results show that SOC and labile fraction carbon contents decreased significantly with increasing soil depth in the three land-use wetlands. The labile fraction carbon contents in the topsoil (0-20cm) in cultivated soils were significantly higher than that in intact meadow wetland and artificial shrubbery soil. The aboveground biomass and soil permeability were the primary influencing factors on the contents of SOC and the labile carbon in the intact meadow wetland and artificial shrubbery soil, however, the farming practice was a factor in cultivated soil. Agricultural measures can effectively reduce the salinity contents; however, it caused a significant increase of NO 3--N concentrations which posed a threat to groundwater quality in the study area.
基金supported by the Key Research and Development Program of Zhejiang Province,China(2022C02008)the National Natural Science Foundation of China(31401343)+1 种基金the earmarked fund for China Agriculture Research System(CARS-01)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAASZDRW202001)。
文摘Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in rhizosphere soil aerated using three different methods(continuous flooding(CF), continuous flooding and aeration(CFA), and alternate wetting and drying(AWD)). The abundances of amoA ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB), nirS, nirK, and nifH genes, and the activities of urease, protease, ammonia oxidase, nitrate reductase, and nitrite reductase were measured at the tillering(S1), heading(S2), and ripening(S3) stages. We analyzed the relationships of the aforementioned microbial activity indices, in addition to soil microbial biomass carbon(MBC) and soil microbial biomass nitrogen(MBN), with the concentration of soil nitrate and ammonium nitrogen. The abundance of nitrogen function genes and the activities of nitrogen invertase in rice rhizosphere soil were higher at S2 compared with S1 and S3 in all treatments. AWD and CFA increased the abundance of amoA and nifH genes, and the activities of urease, protease, and ammonia oxidase, and decreased the abundance of nirS and nirK genes and the activities of nitrate reductase and nitrite reductase, with the effect of AWD being particularly strong. During the entire growth period, the mean abundances of the AOA amoA, AOB amoA, and nifH genes were 2.9, 5.8, and 3.0 higher in the AWD treatment than in the CF treatment, respectively, and the activities of urease, protease, and ammonia oxidase were 1.1, 0.5, and 0.7 higher in the AWD treatment than in the CF treatment, respectively. The abundances of the nirS and nirK genes, and the activities of nitrate reductase and nitrite reductase were 73.6, 84.8, 10.3 and 36.5% lower in the AWD treatment than in the CF treatment, respectively. The abundances of the AOA amoA, AOB amoA, and nifH genes were significantly and positively correlated with the activities of urease, protease, and ammonia oxidase, and the abundances of the nirS and nirK genes were significantly positively correlated with the activities of nitrate reductase. All the above indicators were positively correlated with soil MBC and MBN. In sum, microbial activity related to nitrogen transformation in rice rhizosphere soil was highest at S2. Aeration can effectively increase the activity of most nitrogen-converting microorganisms and MBN, and thus promote soil nitrogen transformation.
基金financially supported jointly by the National Basic Research Program of China(Grant No.2010CB950602)the National Natural Science Foundation of China(Grant Nos.41175133,21228701,41275166,and 41321064)
文摘By using packed soil-core incubation experiments, we have studied stimulating effects of addition of external carbon (C) (glu- cose, 6.4 g C m 2) on heterotrophic respiration and microbial biomass C of a mature broadleaf and Korean pine mixed forest (BKPF) and an adjacent white birch forest (WBF) soil under different wetting intensities (55% and 80% WFPS, water-filled pore space) and nitrogen (N) supply (NH4C1 and KNO3, 4.5 g N m-e) conditions. The results showed that for the control, the cumulative carbon dioxide (CO2) flux from WBF soil during the 15-day incubation ranged from 5.44 to 5.82 g CO2-C m-2, which was significantly larger than that from BKPF soil (2.86 to 3.36 g CO2-C m 2). With increasing wetting intensity, the cumulative CO2 flux from the control was decreased for the WBF soil, whereas an increase in the CO2 flux was observed in the BKPF soil (P 〈 0.05). The addition of NH4C1 or KNO3 alone significantly reduced the cumulative CO2 fluxes by 9.2%-21.6 % from the two soils, especially from WBF soil at low wetting intensity. The addition of glucose alone significantly increased soil heterotrophic respiration, microbial biomass C (MBC), and microbial metabolic quotient. The glucose-induced cumulative CO2 fluxes and soil MBC during the incubation ranged from 8.7 to 11.7 g CO2-C m-2 and from 7.4 to 23.9 g C m-2, which are larger than the dose of added C. Hence, the addition of external carbon can increase the decomposition of soil native organic C. The glucose-induced average and maximum rates of CO2 fluxes during the incubation were significantly in- fluenced by wetting intensity (WI) and vegetation type (VT), and by WIxVT, NH4ClxVT and WIxVTxNH4C1 (P〈0.05). The addition of NH4C1, instead of KNO3, significantly decreased the glucose-induced MBC of WBF soil (P〈0.05), whereas adding NH4C1 and KNO3 both significantly increased the glucose-induced MBC of BKPF soil at high moisture (P〈0.05). According to the differences in soil labile C pools, MBC and CO2 fluxes in the presence and absence of glucose, it can be concluded that the stimulating effects of glucose on soil heterotrophic respiration and MBC under temperate forests were dependent on vegetation type, soil moisture, and amount and type of the N added.