Microbial electrosynthesis(MES)employs microbial catalysts and electrochemistry to enhance CO_(2)bioconversion to organics with concurrent waste biorefining capability.The aim of this review is to comprehensively disc...Microbial electrosynthesis(MES)employs microbial catalysts and electrochemistry to enhance CO_(2)bioconversion to organics with concurrent waste biorefining capability.The aim of this review is to comprehensively discuss the current state of the art and prospects of medium chain fatty acids(MCFAs)production in MES from CO_(2)and organic wastes.Fundamental mechanisms and development of MCFAs production via conventional fermentation are introduced as well.Studies on MCFAs production in MES are summarized,highlighting the strategy of multiple-electron donors(EDs).Challenges for MCFAs production in MES from CO_(2)are presented,and the primary discussions included methanogenesis inhibition,adenosine triphosphate(ATP)limitations of acetogens,and production of limited EDs via solventogenesis.Possible applications of electrochemical approaches to promote the bioconversion of actual waste materials with MCFAs production are analyzed.Finally,future directions are explored,including multi-stage reactions,substrate supply,product extraction,and microbial pathways.展开更多
基金supported by the National Natural Science Foundation of China(51908131)Special Fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(19K05ESPCT)+1 种基金the Chinese Academy of Sciences(CAS)Key Laboratory of Environmental and Applied Microbiology&Environmental Microbiology Key Laboratory of Sichuan Province,Chengdu Institute of Biology,Chinese Academy of Sciences(KLCAS-2019-1)the Fujian Provincial Natural Science Foundation of China(2020J01563)。
文摘Microbial electrosynthesis(MES)employs microbial catalysts and electrochemistry to enhance CO_(2)bioconversion to organics with concurrent waste biorefining capability.The aim of this review is to comprehensively discuss the current state of the art and prospects of medium chain fatty acids(MCFAs)production in MES from CO_(2)and organic wastes.Fundamental mechanisms and development of MCFAs production via conventional fermentation are introduced as well.Studies on MCFAs production in MES are summarized,highlighting the strategy of multiple-electron donors(EDs).Challenges for MCFAs production in MES from CO_(2)are presented,and the primary discussions included methanogenesis inhibition,adenosine triphosphate(ATP)limitations of acetogens,and production of limited EDs via solventogenesis.Possible applications of electrochemical approaches to promote the bioconversion of actual waste materials with MCFAs production are analyzed.Finally,future directions are explored,including multi-stage reactions,substrate supply,product extraction,and microbial pathways.